Portrayal in S-100
1	Introduction	4
2	Glossary	5
3	General portrayal model	6
4	Data model for portrayal rules	8
4.1	Packages	8
4.2	Graphics Package	9
4.2.1	Introduction	9
4.2.2	The colour model	9
4.2.3	The model of the graphics package	9
4.2.3.1	Sub packages	9
4.2.3.2	The GraphicsBase package	9
4.2.3.3	The Symbol Package	11
4.2.3.4	The Line Style package	12
4.2.3.5	The Area Fill package	15
4.2.3.6	The Text package	18
4.3	Presentation Package	21
4.3.1	Introduction	21
4.3.2	The Model of the Presentation package	21
4.3.2.1	Sub packages	21
4.3.2.2	The Portrayal Catalogue package	22
4.3.2.3	The Display package	30
4.4	The Expressions package	32
4.4.1	Packages	32
4.4.2	Types package	32
4.4.2.1	Overview	32
4.4.2.2	Base types	33
4.4.2.3	Simple types	34
4.4.2.4	Complex types	36
4.4.3	Expression package	40
4.4.3.1	General introduction	40
4.4.3.2	Representation of expressions	40
4.4.3.3	The data model	42
4.4.4	Unary operators package	44
4.4.4.1	The data model	44
4.4.5	Binary operators package	45
4.4.5.1	Overview	45
4.4.5.2	Logical Operators	46
4.4.5.3	Relational Operators	46
4.4.5.4	Arithmetic Operators	47
4.4.5.5	ElementOperator	49
4.4.6	Operations package	50
4.4.6.1	Overview	50
4.4.6.2	Mathematical operations	51
4.4.6.3	String operations	53
4.4.6.4	Operations for containers	54
4.4.6.5	Operations for data access	57
4.4.6.6	Operations for the Graphics package	72
4.4.6.7	Operations for the Presentation package	87
4.5	Statement Package	93
4.5.1	Overview	93
4.5.2	Elements of the model	95
4.5.2.1	Statement	95
4.5.2.2	Variable declaration	95
4.5.2.3	Variable assignment	95
4.5.2.4	Call statement	96
4.5.2.5	Sequence statement	96
4.5.2.6	Condition statement	96
4.5.2.7	Loop statement	97
4.5.2.8	Switch statement	97
4.5.2.9	CaseValue	98
4.5.2.10	Void statement	98
5	XML representation for a portrayal catalog	99
6	A script language for portrayal rules (informative)	100
6.1	The Backus-Naur-Form	100
6.2	Modifications to the Backus-Naur-Form	102
6.3	The expression syntax	103
6.4	The rule set syntax	104
6.5	Comments	105
6.6	Include directives	105
6.7	Example – A small rule set	105

[bookmark: _Toc321410438]Introduction
In S-100 the portrayal of data follows a rule based approach. Based on a generic portrayal model which is described in this standard the rules are machine readable data. The rules will be interpreted by the portrayal software and a set of symbol instructions is generated. Those symbol instructions will reference portrayal elements which are defined in a portrayal catalogue. The elements of the portrayal catalogue will be:
· Colours and colour schemas
· Pens
· Line styles
· Fill pattern
· Symbols
The model of the rules, the structure and both a schema and a script language will be described in this standard. The portrayal rules itself are part of the portrayal catalogue too which itself is part of the product specification.

[bookmark: _Toc321410439]Glossary
To Be Done.

[bookmark: _Toc321410440]General portrayal model
The depiction of an S-100 dataset is rule based. A portrayal rule is an interpretable piece of software. It contains the instructions to generate a set of symbol instructions.
The rules are enclosed in sets. Each set of rules is assigned to a data product. There may be more than one rule sets for a data product. In this case the user has to select one of them for the actual depiction.
There are six types of rules in a rule set:
1. Global initializing rules
2. Dataset initializing rules
3. Feature type rules
4. Dataset finishing rules
5. Global finishing rules
6. Subroutines
Global initializing rules are invoked before any other rules during the portrayal process. They have one parameter: The set of datasets to be portrayed.
Dataset initializing rules are called for each dataset before any feature rule is invoked for that dataset. The dataset is passed as a parameter to those rules.
Feature rules are invoked for a single feature type. A feature rule will be assigned to one or many classes of feature types. The parameter is the feature type.
Dataset finishing rules are called after all feature rules have been invoked for that data set. The parameter is the dataset.
Global finishing rules are invoked after all other rules during the portrayal process. The parameter is the set of datasets to be portrayed.
 Subroutines will be only called from within other rules. The overall portrayal algorithm is as follows:
Portrayal of a set of datasets DS with the selected ruleset RS.
1. Fill the context variables of RS with the values the user has selected for them.
2. Invoke all global initialization rules from RS and pass DS as a parameter to them.
3. For each dataset ds in DS
a. Invoke all dataset initialization rules from RS with ds as a parameter
b. For each feature type ft in ds
	Find the feature rules R from RS which are assigned to the class of ft.
	Invoke all rules from R with ft as the parameter.
c. Invoke all dataset finishing rules from RS with ds as a parameter.
4. Invoke all global finishing rules from RS and pass DS as a parameter to them.
Rules comprises of statements which will be interpreted. The program flow can be controlled by condition statements, loop statements and switch statements. Subroutines (other rules) can be invoked by call statements.
Values will be described by expressions. Such expressions can be literals (constant values), variables, or predefined operations. Expressions can be combined by operators, logical and arithmetical. The type of a value can be either simple or complex and container types are supported as well.
The actual symbol instructions will be created by an instance of the complex type DisplayGenerator. For more details see the chapter on Presentation.
More details on statements and expressions are in the following section of this document.
Portrayal catalogues are machine readable. An XML-schema that defines the structure of the portrayal catalogue is part of this standard. A script language will be described in an informative section. These script language defines the rules only.

[bookmark: _Toc321410441]Data model for portrayal rules
[bookmark: _Toc321410442]Packages
The data model for portrayal rules is divided into four main packages:
1. Graphics
2. Presentation
3. Expressions
4. Statements
[image:]
The Graphics package contains the graphical primitives that can be used to depict the data of a geographical data set. It contains colours, pens, area fills, symbols, pixmaps, line styles, fonts, and text elements.
The Presentation package describes the model for the portrayal catalogue including the portrayal rules. It also contains the model of the display instructions that are generated by the portrayal rules.
The Expressions and Statements packages containing elements to define the portrayal rules.
The Expressions package contains the types used within portrayal rules as well as a model of expressions, such as literals, variables, operators, and operations.
The Statements package describes all statements that can be used within a portrayal rule to control the logical flow in a rule.
[bookmark: _Toc321410443]
Graphics Package
[bookmark: _Toc321410444]Introduction
To Be Done.
[bookmark: _Toc321410445]The colour model
To Be Done.
[bookmark: _Toc321410446]The model of the graphics package
[bookmark: _Toc321410447]Sub packages
The Graphics package is divided into five sub packages.
· GraphicBase
· Symbol
· LineStyles
· AreaFills
· Text
[image:]

[bookmark: _Toc321410448]The GraphicsBase package
The following diagram shows the types of the GraphicBase package. It contains basic types used within the Graphics package. This includes:
· A geometric point
· A geometric vector
· Colour
· Pen
· Pixmap

[image:]
Point
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Point
	A zero-dimensional geometric object in a two-dimensional coordinate space.
	-
	-

	Attribute
	x
	The x-coordinate of the point.
	1
	Double

	Attribute
	y
	The y-coordinate of the point.
	1
	Double

Vector
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Vector
	Geometric object that has both a magnitude and a direction. It is limited to the two-dimensional coordinate space within this model.
	-
	-

	Attribute
	x
	The x-coordinate of the vector.
	1
	Double

	Attribute
	y
	The y-coordinate of the vector.
	1
	Double

Color
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Color
	Representing a colour according to the colour model
	-
	-

	Attribute
	token
	The token specifies either an element in a colour table or a colour definition in the RGB space.
	1
	String

	Attribute
	transparency
	The value specifies the transparency; between 0 (opaque) and 1 (full transparent)
	1
	Double

Pen
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Pen
	A tool for drawing lines.
	-
	-

	Attribute
	width
	The width of the pen in mm.
	1
	Double

	Role
	color
	The colour of the pen comprises the actual colour and the transparency.
	1
	Color

Pixmap
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Pixmap
	A two dimensional array of pixels defining an image.
	-
	-

	Attribute
	graphic
	A reference to an external definition of the pixmap.
	1
	String

	Role
	overrideAll
	A colour that override all none fully transparent colours used within the pixmap.
	0..1
	Color

	Association
	override
	A colour to be replaced.
	0..*
	OverrideColor

OverrideColor
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	OverrideColor
	Association class for the replacement of an existing colour in the pixmap.
	-
	-

	Role
	color
	The colour that is used to replace an existing colour in the pixmap.
	1
	Color

OrientationCRS
	Role Name
	Name
	Description

	Type
	OrientationCRS
	The value describes what the reference of an orientation angle is.

	Enumeration
	TrueNorth
	The angle is measured clockwise from the true north direction.

	Enumeration
	DisplayUp
	The angle is measured clockwise from the up direction of the display.

	Enumeration
	LocalGeometry
	The angle is measured clockwise from a direction perpendicular to the direction of the line geometry.

[bookmark: _Toc321410449]The Symbol Package
This package contains the model of a symbol. Note that the definition of the symbol graphic itself is not subject of this model. This will be defined in external files. Details to be included (we may need a separate chapter and a link to that chapter here).
[image:]
Symbol
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Symbol
	A two dimensional graphical element.
	-
	-

	Attribute
	graphic
	A reference to an external definition of the symbol graphic.
	1
	String

	Attribute
	orientation
	The rotation angle of the symbol clockwise from the orientation reference.
	1
	Double

	Attribute
	orientationCRS
	Specifies the coordinate reference system for the rotation
	1
	OrientationCRS

	Attribute
	scaleFactor
	The factor by which the original symbol graphic is scaled.
	1
	Double

	Role
	overrideAll
	A colour that override all none fully transparent colours used within the symbol.
	0..1
	Color

	Role
	pivot
	The point around which the symbol is scaled and rotated. (This attribute is only used if there is no pivot point defined within the graphic.)
	0..1
	Point

	Association
	override
	A colour to be replaced.
	0..*
	OverrideColor

OverrideColor
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	OverrideColor
	Association class for the replacement of an existing colour in the symbol.
	-
	-

	Role
	color
	The colour that is used to replace an existing colour in the symbol.
	1
	Color

[bookmark: _Toc321410450]The Line Style package
This package contains the model of line styles. Line styles define how line geometry is depicted.
More details on the different line styles should go in here.
[image:]

LineStyle
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	LineStyle
	Abstract base class for graphics to depict line geometry.
	-
	-

SimpleLineStyle
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	SimpleLineStyle
	A style for line geometry either solid or dashed.
	-
	-

	Attribute
	offset
	An offset perpendicular to the direction of the line. Positive offsets are at the right side of the line. The unit is mm.
	1
	Double

	Attribute
	capStyle
	The decoration that is applied where a line segment ends.
	1
	CapStyle

	Attribute
	joinStyle
	The decoration that is applied where two line segments meet.
	1
	JoinStyle

	Attribute
	intervalLength
	The length of a repeating interval of the line style in mm. If not defined the line style describes a solid line
	0..1
	Double

	Role
	dash
	The dashes of a dashed line style.
	0..*
	Dash

	Role
	pen
	The pen used for drawing the line.
	1
	Pen

Dash
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Dash
	A single dash in a repeating line pattern.
	-
	-

	Attribute
	start
	The start of the dash measured from the start of the repeating interval. The unit is mm.
	1
	Double

	Attribute
	length
	The length of the dash in mm.
	1
	Double

ComplexLineStyle
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	ComplexLineStyle
	Defining a line style with a repeating pattern. It may contain symbols.
	
	

	Attribute
	graphic
	A reference to an external definition of the symbol graphic.
	1
	String

	Attribute
	scaleFactor
	The factor by which the original symbol graphic is scaled.
	1
	Double

	Role
	overrideAll
	A colour that override all none fully transparent colours used within the complex line style.
	0..1
	Color

	Association
	override
	A colour to be replaced.
	0..*
	OverrideColor

OverrideColor
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	OverrideColor
	Association class for the replacement of an existing colour in the complex line style.
	-
	-

	Role
	color
	The colour that is used to replace an existing colour in the complex line style.
	1
	Color

JoinStyle
	Role Name
	Name
	Description

	Type
	JoinStyle
	The decoration that is applied where two line segments meet.

	Enumeration
	Bevel
	

	Enumeration
	Miter
	

	Enumeration
	Round
	

CapStyle
	Role Name
	Name
	Description

	Type
	CapStyle
	The decoration that is applied where a line segment ends.

	Enumeration
	Butt
	

	Enumeration
	Square
	

	Enumeration
	Round
	

[bookmark: _Toc321410451]The Area Fill package
This package contains the model of area fills. Area fills define how area geometry is depicted.
More details on the different area fills should go in here.

[image:]
AreaFill
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	AreaFill
	Abstract base class for graphics that are designed to fill an area.
	-
	-

PatternFill
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	PatternFill
	Abstract base class for pattern area fills.
	-
	-

	Attribute
	patternCRS
	Coordinate reference system which defines the origin of the pattern.
	1
	PatternCRS

ColorFill
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	ColorFill
	Class defining a solid colour fill for an area.
	-
	-

	Role
	color
	References the colour and transparency for the colour fill.
	1
	Color

PixmapFill
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	PixmapFill
	Pattern fill where the pattern is defined by a pixmap.
	-
	-

	Role
	pixmap
	The pixmap defining the pattern.
	1
	Pixmap

SymbolFill
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	SymbolFill
	Pattern fill where the pattern is defined by repeated symbols.
	-
	-

	Role
	symbol
	The symbol used for the pattern.
	1
	Symbol

	Attribute
	v1
	Defines the offset of the next symbol in the first dimension of the pattern.
	1
	Vector

	Attribute
	v2
	Defines the offset of the next symbol in the second dimension of the pattern.
	1
	Vector

HatchFill
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	HatchFill
	Defining a pattern made of one or two sets of parallel lines.
	-
	-

	Role
	line
	The line style used for the lines.
	1..2
	SimpleLineStyle

	Association
	Hatch
	A set of parallel lines.
	1..2
	Hatch

Hatch
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Hatch
	A set of parallel lines used for an area fill pattern.
	
	

	Attribute
	direction
	The vector defining the direction of the set of lines.
	1
	Vector

	Attribute
	next
	The vector defining the starting point of the next line.
	1
	Vector

PatternCRS
	Role Name
	Name
	Description

	Type
	PatternCRS
	Describes how a fill patter is referenced.

	Enumeration
	Device
	The anchor point of the fill pattern is in the coordinate system of the drawing device.

	Enumeration
	LocalGeometry
	The anchor point of the fill pattern is in the coordinate system of the spatial object to be depicted.

[bookmark: _Toc321410452]The Text package
The text package contains the types necessary for the depiction of text. This includes fonts. In this model fonts are described by properties. Which system font will be used for rendering the text is not defined here. The selection of a system font is in the responsibility of the rendering software.
[image:]
Font
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Font
	A font is a set of typefaces. A typeface is the artistic representation or interpretation of characters; it is the way the type looks.
In this model the font is described by four attributes. The match to an actual font of the graphic system is part of the implementation.
	-
	-

	Attribute
	serifs
	Describes whether the typefaces contain serifs or not.
	1
	Boolean

	Attribute
	weight
	Describes the thickness of the typefaces.
	1
	FontWeight

	Attribute
	slant
	Describes the slant of the typefaces.
	1
	FontSlant

	Attribute
	proportion
	Describes whether all typefaces in the font have an individual width or a fixed width.
	1
	FontProportion

Text
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Text
	A graphic element for depicting text. The text is composed of elements. The common properties are given by this class.
	-
	-

	Attribute
	orientation
	The rotation angle of the symbol clockwise from the orientation reference.
	1
	Double

	Attribute
	orientationCRS
	Specifies the coordinate reference system for the rotation
	1
	OrientationCRS

	Attribute
	offset
	An offset to the reference position.
	1
	Vector

	Attribute
	horizontalAlignment
	Specifies how the text is horizontally aligned relative to the anchor point.
	1
	HorizontalAlignment

	Attribute
	verticalAlignment
	Specifies how the text is vertically aligned relative to the anchor point.
	1
	VerticalAlignment

	Role
	element
	The ordered list of text elements.
	1..*
	TextElement

TextElement
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	TextElement
	A sub element of a graphic text.
	-
	-

	Attribute
	text
	The text to be depicted
	1
	String

	Attribute
	bodySize
	This property describes the size with which the text will be depicted.
	1
	Double

	Attribute
	verticalOffset
	The vertical offset in mm between the base line of the text element and the base line of the text. This can be used to generate sub- or superscripts.
	1
	Double

	Attribute
	flags
	Flags describe special properties of the text element like underline etc.
	0..*
	TextFlags

	Role
	font
	The font used for the depiction of the text element.
	1
	Font

	Role
	foreground
	The colour used to depict the glyphs.
	1
	Color

	Role
	background
	The colour to fill the rectangle surrounding the text element before the text is depicted. If not given there is no fill (transparent)
	0..1
	Color

FontSlant
	Role Name
	Name
	Description

	Type
	FontSlant
	The slant used within a font

	Enumeration
	Upright
	Typefaces are upright.

	Enumeration
	Italics
	Typefaces are cursive.

FontWeight
	Role Name
	Name
	Description

	Type
	FontWeigth
	The thickness used for the typefaces in a font.

	Enumeration
	Light
	Typefaces are depicted as thin (standard)

	Enumeration
	Medium
	Typefaces are depicted thicker as ‘Light’ but not as thin as ‘Bold’

	Enumeration
	Bold
	Typefaces are depicted more prominent (Bold)

FontProportion
	Role Name
	Name
	Description

	Type
	FontProportion
	The values describe how the width of the typefaces in a font is defined.

	Enumeration
	MonoSpaces
	All typefaces in a font have the same width, also known as ‘typewriter’ fonts.

	Enumeration
	Proportional
	Any typeface in the font as its individual width.

TextFlags
	Role Name
	Name
	Description

	Type
	TextFlags
	The values describe some effects used when the text will be depicted. The values can be combined.

	Enumeration
	UnderLine
	Text is depicted with a line under the text.

	Enumeration
	StrikeThrough
	Text is depicted struck through, a line goes through the text.

	Enumeration
	UpperLine
	Text is depicted with a line above the text

VerticalAlignment
	Role Name
	Name
	Description

	Type
	VerticalAlignment
	Describes the text placement relative to the anchor point in vertical direction.

	Enumeration
	Top
	The anchor point is at the top of the text.

	Enumeration
	Bottom
	The anchor point is at the bottom of the text.

	Enumeration
	Center
	The anchor point is at the (vertical) centre of the text.

HorizontalAlignment
	Role Name
	Name
	Description

	Type
	HorizontalAlignment
	Describes the text placement relative to the anchor point in horizontal direction.

	Enumeration
	Left
	The anchor point is left of the text.

	Enumeration
	Right
	The anchor point is right of the text.

	Enumeration
	Center
	The anchor point is at the (horizontal) centre of the text.

[bookmark: _Toc321410453]
Presentation Package
[bookmark: _Toc321410454]Introduction
This package defines the portrayal catalogue and a set of display instructions. A portrayal catalogue contains elements that will be referenced by the display instructions. These elements describe how a feature type will be depicted. The display instructions itself join the graphical element from the catalogue and the feature type from a geographic data set. Furthermore they contain properties for:
· Filtering information from the display,
· Defining the order of depiction
· Splitting the instruction into groups
More details to be included here (what is display mode etc.)
A portrayal catalogue contains the following elements:
· Colours and colour schemes
· Symbols
· Area Fills
· Line Styles
· Pixmaps
· Pens
· Variables for user defined values
· Viewing groups and display modes
· Display planes
· Rule sets including portrayal rules
The rule sets define the portrayal of a geographic data set.
[bookmark: _Toc321410455]The Model of the Presentation package
[bookmark: _Toc321410456]Sub packages
The model is divided into two sub packages: PortrayalCatalog and Display.
[image:]
[bookmark: _Toc321410457]The Portrayal Catalogue package
Packages
The portrayal catalogue is modelled within a couple of sub packages shown in the following diagram:
[image:]

The Catalog package
[image:]
PortrayalCatalog
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	PortrayalCatalog
	A catalogue containing all information to depict a geographic data set.
	-
	-

	Attribute
	productId
	The identifier of the data product for which the rule set defines the portrayal.
	1
	String

	Role
	item
	Predefined items used for the portrayal.
These items include colours, colour schemes, pens, pixmaps, symbols, line styles, area fills, viewing groups, display modes, display planes, variables, and rule sets.
	1..*
	CatalogItem

CatalogItem
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	CatalogItem
	Abstract base class for all identifiable elements of the portrayal catalogue.
	-
	-

	Attribute
	id
	The identifier of item. With this identifier the item must be uniquely identifiable within the portrayal catalogue.
	1
	String

	Role
	description
	The description of the element. Multiple descriptions can be associated for different languages.
	0..*
	Description

Description
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	VariableDescription
	A class containing a description in one language
	-
	-

	Attribute
	language
	The language used for the description.
	1
	String

	Attribute
	name
	An optional name for items that are intended to be chosen from the user.
	0..1
	String

	Attribute
	description
	The text of the description.
	1
	String

The RuleSet package
[image:]
RuleSet
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	RuleSet
	A set of portrayal rules to generate the depiction of a geographic data set.
	-
	-

	Role
	rules
	The portrayal rules.
	1..*
	Rule

Rule
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Rule
	A portrayal rule.
	-
	-

	Attribute
	id
	An identifier to uniquely identify the rule within the rule set.
	1
	String

	Attribute
	featureCodes
	The codes of feature types that force to invoke the portrayal rule. This only applies to rules of type FeatureRule.
	0..*
	String

	Role
	ruleType
	The type of the rule.
	1
	RuleType

	Role
	formalParameters
	An ordered list of formal parameters. They define local variables which can be used within the rule. When a rule is called, values must be assigned to the parameters. If the parameter is an output parameter (in which case it must be a variable reference) the rule can return a value to this parameter.
	0..*
ordered
	FormalParameter

	Role
	context
	The context for the rule.
	1
	Expressions::Context

FormalParameter
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	FormalParameter
	A formal parameter of a rule. A formal parameter is a local variable that can be set and optional returned when the rule is called.
	-
	-

	Attribute
	id
	The identifier to uniquely identify the parameter within the rule.
	1
	String

	Attribute
	dataType
	The data type of the parameter
	1
	String

	Role
	parameterType
	Specifies if the parameter is for input only or for output too. In the latter case it must be a variable reference.
	1
	ParameterType

GlobalVariable
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	GlobalVariable
	A variable which can be modified by the user. The variable can be used to control the portrayal.
	-
	-

	Attribute
	dataType
	The data type of the variable.
	1
	String

	Attribute
	initialValue
	The initial value of the variable.
	1
	Expressions::Type

RuleType
	Role Name
	Name
	Description

	Type
	RuleType
	The type of a portrayal rule.

	Enumeration
	InitRule
	Rules that will be invoked before any other rules.

	Enumeration
	FinishRule
	Rules that will be invoked after all other rules.

	Enumeration
	FeatureRule
	Rules that are assigned to one or more feature classes and will be invoked for each instance of those classes.

	Enumeration
	SubRule
	Rules that will be invoked only from within other rules.

ParameterType
	Role Name
	Name
	Description

	Type
	ParameterType
	The type of a formal parameter.

	Enumeration
	InputParameter
	For such a parameter an expression is evaluated before the rule is invoked. The value of the expression is than passed into the rule and can be used inside the rule.

	Enumeration
	OutputParameter
	In addition to an input parameter this parameter can return a value from the rule. This means the expression used in the call statement must be a variable. When inside the rule a value will be assigned to the parameter it will be returned to the level of the call statement.

The DisplayMode package
[image:]
DisplayMode
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	DisplayMode
	A set of viewing groups.
	-
	-

	Role
	category
	The category of the display mode.
	1
	DisplayModeCategory

	Role
	member
	The viewing groups which define the display mode.
	1..*
	ViewingGroup

ViewingGroup
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	ViewingGroup
	A thematic layer to filter display instructions.
	-
	-

	Attribute
	value
	A unique number to identify the viewing group.
This member is for backward compatibility to S-52.
	1
	Integer

DisplayPlane
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	DisplayPlane
	A physical layer that defines how display instructions can be split into several lists.
	-
	-

DisplayModeCategory
	Role Name
	Name
	Description

	Type
	DisplayModeCategory
	The category of a display mode

	Enumeration
	BaseMode
	This mode defines the viewing groups that define the base of a portrayal. Display modes with this category are mutually exclusive.

	Enumeration
	SupplementMode
	This modes defines that the viewing groups are intended to be an extension (or restriction) to any base mode.

The Color package
[image:]
ColorScheme
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	ColorScheme
	A palette of colors that can be chose by the user.
	-
	-

ColorToken
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	ColorToken
	A colour identifiable by an identifier.
	-
	-

	Role
	scheme
	The colour scheme for that the definition applies.
	1..*
	

	Association
	definition
	The definition of the colour according to the target colour scheme.
	1
	CIEColorDefinition

CIEColorDefinition
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	CIEColorDefinition
	Association class that defines a device independent colour.
	-
	-

	Attribute
	x
	x-coordinate in the CIE chromaticity diagram.
	1
	Double

	Attribute
	y
	y-coordinate in the CIE chromaticity diagram.
	1
	Double

	Attribute
	L
	Luminance normalized between 1 and 100.
	1
	Double

	Role
	rgb
	An optional device dependent definition of the colour in the RGB colour space.
	0..1
	RGBColorDefinition

RGBColorDefinition
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	RGBColorDefinition
	Association class that defines a device independent colour.
	-
	-

	Attribute
	red
	The red component of the colour in a range between 0 and 255.
	1
	Integer

	Attribute
	green
	The green component of the colour in a range between 0 and 255.
	1
	Integer

	Attribute
	blue
	The blue component of the colour in a range between 0 and 255.
	1
	Integer

The Symbol package
[image:]
Symbol
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Symbol
	A symbol element of the portrayal catalogue.
	-
	-

	Role
	graphic
	The graphic of the element.
	1
	Symbol::Symbol

The Pixmap package
[image:]
Pixmap
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	AreaFill
	A pixmap element of the portrayal catalogue.
	-
	-

	Role
	graphic
	The graphic of the element.
	1
	Graphics::Pixmap

The Pen package
[image:]
Pen
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	AreaFill
	A pen element of the portrayal catalogue.
	-
	-

	Role
	graphic
	The graphic of the element.
	1
	Graphics::Pen

The LineStyle package
[image:]
LineStyle
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	LineStyle
	A line style element of the portrayal catalogue.
	-
	-

	Role
	graphic
	The graphic of the element.
	1
	LineStyles::LineStyle

The AreaFill package
[image:]
AreaFill
	Role Name
	Name
	Description
	Mult.
	Type

	Class	
	AreaFill
	An area fill element of the portrayal catalogue.
	-
	-

	Role
	graphic
	The graphic of the element.
	1
	AreaFills::AreaFill

[bookmark: _Toc321410458]The Display package
This package contains classes which describe the display of a geographic data set. The display is composed of instructions that link the feature types and their geometry to graphical elements from the Graphics package. The next diagram shows the model.
[image:]

Display
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Display
	An abstraction of the display. Instructions must be added to the Display in order to create a complete presentation of a geographic data set.
	-
	-

	Role
	instruction
	The set of instructions that compose the display.
	0..*
	DisplayInstruction

DisplayInstruction
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	DisplayInstruction
	Abstract base class for all display instructions.
	-
	-

	Attribute
	viewingGroup
	The viewing group the instruction is assigned to.
	1
	String

	Attribute
	displayPlane
	The display plane the instruction is assigned to
	1
	String

	Attribute
	drawingPriority
	The priority that defines the order of drawing.
	1
	Integer

	Role
	feature
	The feature type that will be depicted by the instruction.
	1
	DataAccessTypes::FeatureType

	Role
	geometry
	The spatial type that defines the geometry used for the depiction.
	1
	DataAccessTypes::GMObject

PointInstruction
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	PointInstruction
	A display instruction for point symbol.
	-
	-

	Role
	symbol
	The symbol to be depicted.
	1
	Symbol::Symbol

LineInstruction
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	LineInstruction
	A display instruction for line geometry.
	-
	-

	Role
	lineStyle
	The line style used for the depiction.
	1
	LineStyles::LineStyle

AreaInstruction
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	AreaInstruction
	A display instruction for area geometry.
	-
	-

	Role
	areaFill
	The area fill used for the depiction.
	1
	AreaFills::AreaFill

TextInstruction
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	TextInstruction
	A display instruction for depicting text.
	-
	-

	Role
	text
	The text to be depicted.
	1
	Text::Text

[bookmark: _Toc321410459]The Expressions package
[bookmark: _Toc321410460]Packages
The Expression Package is divided into sub packages according to the following diagram.
[image:]

[bookmark: _Toc321410461]Types package
[bookmark: _Toc321410462]Overview
Each expression is representing a value of a certain type. This section introduces the types that can be used for expressions in this standard.
In general there are three categories of data types.
1. Simple types.
These types can carry information such as numbers, text, dates etc. They cannot be used as scope objects for operations.
2. Complex types.
These types represent objects within the context of portrayal rules. They can be used as scope objects for operations.
3. Container types.
Container types are collections of other data types. For each instance of a container type the type of all elements must be identical. Container types can be used as scope objects for operations.
There are two container types: List and Set.
Complex types are divided into packages for:
· Data access
· Graphic elements
· Display elements
· Portrayal catalogue
·
[bookmark: _Toc321410463]Base types
The following diagram shows the base types.
[image:]

Type
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Type
	The abstract base of all types
	-
	-

	Attribute
	typeName
	The unique name of the type.
	1
	String

SimpleType
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	SimpleType
	The abstract base of all simple types. Simple types can carry values but cannot be used as scope object for operations.
	-
	-

ComplexType
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	ComplexType
	The abstract base of all complex types. Complex types represent complex objects and can be used as scope objects for a distinct set of operations.
	-
	-

ContainerType
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	ContainerType
	The abstract base of all container types. Container types are collections of other data types. For each instance of a container type the type of all elements must be identical. Container types can be used as scope objects for a distinct set of operations.
	-
	-

	Role
	elementType
	The type of the elements in the container.
	1
	Type

Set
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Set
	A set is a collection of elements without any particular order, and no repeated values. It is the implementation of the mathematical concept of a finite set.
	-
	-

	Attribute
	typeName
	Constant value: SET
	1
	String

List
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	List
	A list is an ordered collection of elements. It is the implementation of the mathematical concept of a finite sequence, also called a tuple. If the same value occurs multiple times, each occurrence is considered a distinct item.
	-
	-

	Attribute
	typeName
	Constant value: LIST
	1
	String

[bookmark: _Toc321410464]Simple types
Simple types are data types used as atomic piece of information.
[image:]

Boolean
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Boolean
	A logical value either true or false.
	-
	-

	Attribute
	typeName
	Constant value: BOOLEAN
	1
	String

Number
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Number
	Abstract base class for numeric types.
	-
	-

Integer
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Integer
	In theory integer numbers containing all natural numbers 0, 1, 2, 3, ... as well as their additive inverses -1, -2, -3,
It is usually denoted by the symbol:
Although the set of integer numbers is infinite in a computer environment the set is limited by the number of bytes used for the internal representation. Here it is assumed the 4 bytes are used for an integer number. Therefore the possible values are:

Examples: 1; 3; -32; 42; 0
	-
	-

	Attribute
	typeName
	Constant value: INTEGER
	1
	String

Double
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Double
	Representation of floating point numbers according to IEEE 774.
Note: the values NaN (not a number), infinite, and –infinite will not be supported for literals of this type.
The decimal mark must be the full stop ‘.’
Examples: 1.234; -42.0
	-
	-

	Attribute
	typeName
	Constant value: DOUBLE
	1
	String

String
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	String
	A string is a sequence of characters to represent text. The character set should support the BMP (Base Multilingual Page) of ISO/IEC 10646.
Examples: Hello World; Überprüfen; Водка
	-
	-

	Attribute
	typeName
	Constant value: STRING
	1
	String

Date
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Date
	A date gives values for year, month and day according to the Gregorian Calendar. Character encoding of a date is a string which shall follow the calendar date format (complete representation, extended format) for date specified by ISO 8601.
Example: 2011-04-11 (for the 11th of April 2011)
	-
	-

	Attribute
	typeName
	Constant value: DATE
	1
	String

Time
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Time
	A time is given by an hour, minute and second. Character encoding of a time is a string that follows the local time (complete representation, extended format) format defined in ISO 8601.
Time zone according to UTC is optional.
Example: 18:30:59 (18 hours 30 minutes 59 seconds)
	-
	-

	Attribute
	typeName
	Constant value: TIME
	1
	String

DateTime
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	DateTime
	A DateTime is a combination of a date and a time type. Character encoding of a DateTime shall follow ISO 8601 using T as the time designator (see above).
Example: 1985-04-12T10:15:30
	-
	-

	Attribute
	typeName
	Constant value: DATETIME
	1
	String

[bookmark: _Toc321410465]Complex types
General
Complex types can scope objects for operation. They are objects with complex property structure. The properties can be accessed by an operation interface. For each complex type a set of predefined operations is defined.
There are three sets of complex types:
1. Complex types for data access
2. Complex types of the graphics package
3. Complex types for the presentation package
The first group contains the complex types for data access. These types have a read-only operation interface, i.e. the operations cannot change the instances of such types. With those types the content of a data set can be determined. They correspond to the classes of the General Feature Model and the spatial model.
The second group contains the data types of the graphics package. They describe the graphics used for the depiction of an object. The instances of these types can be modified by operations; they have a read-write interface. They are described in detail in the section on the Graphics package.
The third group contains data types for accessing the display and the portrayal catalogue. They have an read-write interface and are described in more detail in the section on the Presentation package.
Complex types for data access
These data types allow obtaining information which is relevant for portrayal from an S-100 compliant data set. Details on the operation interface will be given in a separate section.

[image:]
DataSet
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	DataSet
	A geographic data set.
	-
	-

	Attribute
	typeName
	Constant value: DATA_SET
	1
	String

Attributes
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Attributes
	A quasi container carrying the attributes of a feature type, an information type, a feature association, an information association or a data set.
	-
	-

	Attribute
	typeName
	Constant value: ATTRIBUTES
	1
	String

ComplexAttribute
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	ComplexAttribute
	A complex attribute according to the S-100 data model.
	-
	-

	Attribute
	typeName
	Constant value: COMPLEX_ATTRIBUTE
	1
	String

FeatureType
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	FeatureType
	A feature type within a data set.
	-
	-

	Attribute
	typeName
	Constant value: FEATURE_TYPE
	1
	String

InformationType
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	InformationType
	An information type within a data set.
	-
	-

	Attribute
	typeName
	Constant value: INFORMATION_TYPE
	1
	String

GMObject
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	GMObject
	A complex type representing any type of geometry.
	-
	-

	Attribute
	typeName
	Constant value: GM_OBJECT
	1
	String

GMPoint
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	GMPoint
	A geometry object in a data set of type point.
	-
	-

	Attribute
	typeName
	Constant value: GM_POINT
	1
	String

GMPointSet
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	GMPointSet
	A geometry object in a data set of type point set.
	-
	-

	Attribute
	typeName
	Constant value: GM_POINT_SET
	1
	String

GMCurve
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	GMCurve
	A geometry object in a data set of type curve.
	-
	-

	Attribute
	typeName
	Constant value: GM_CURVE
	1
	String

GMCompositeCurve
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	GMCompositeCurve
	A geometry object in a data set of type composite curve.
	-
	-

	Attribute
	typeName
	Constant value: GM_COMPOSITE_CURVE
	1
	String

GMSurface
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	GMSurface
	A geometry object in a data set of type surface.
	-
	-

	Attribute
	typeName
	Constant value: GM_SURFACE
	1
	String

FeatureAssociation
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	FeatureAssociation
	A relationship between two feature types.
	-
	-

	Attribute
	typeName
	Constant value: FEATURE_ASSOCIATION
	1
	String

InformationAssociation
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	InformationAssociation
	A relationship between a feature or information type and another information type.
	-
	-

	Attribute
	typeName
	Constant value: INFORMATION_ASSOCIATION
	1
	String

Complex types of the graphic package
The following table shows the complex types of the Graphics package. Those types are used to define the graphical output of the portrayal. More details of the types can be found in the section on the Graphics package. The operation interface will be given in a separate section.
	Type
	Type name
	Description

	Point
	POINT
	A Zero-dimensional geometry in a two-dimensional coordinate space.

	Vector
	VECTOR
	Geometric object that has both a magnitude and a direction.

	Color
	COLOR
	A colour according to the portrayal colour model.

	Pixmap
	PIXMAP
	A two dimensional array of pixels defining an image.

	Pen
	PEN
	A tool for drawing lines.

	ColorFill
	COLOR_FILL
	An area fill with a solid color and transparency.

	PixmapFill
	PIXMAP_FILL
	A pattern area fill where the pattern is defined by a pixmap.

	SymbolFill
	SYMBOL_FILL
	A pattern area fill defined by a pattern of symbols.

	HatchFill
	HATCH_FILL
	A pattern area fill defined by one or two sets of parallel lines.

	Symbol
	SYMBOL
	A two dimensional graphical element.

	SimpleLineStyle
	SIMPLE_LINE_STYLE
	A style for line geometry either solid or dashed.

	ComplexLineStyle
	COMPLEX_LINE_STYLE
	A style for a line with a repeating pattern other than dashes.

	Font
	FONT
	A set of typefaces

	Text
	TEXT
	A graphical element for depicting text.

	TextElement
	TEXT_ELEMENT
	A sub element of a graphical text.

Complex types of the Presentation package
The following table shows the complex types of the Presentation package. Those types are used to define the graphical output of the portrayal. More details of the types can be found in the section on the Presentation package. The operation interface will be given in a separate section.
	Type
	Type name
	Description

	PortrayalCatalog
	PORTRAYAL_CATALOG
	A catalogue containing all information to depict a geographic data set.

	Display
	DISPLAY
	An abstraction of the display. Instructions must be added to the Display in order to create a complete presentation of a geographic data set.

	PointInstruction
	POINT_INSTRUCTION
	A display instruction for point symbols.

	LineInstruction
	LINE_INSTRUCTION
	A display instruction for line geometry.

	AreaInstruction
	AREA_INSTRUCTION
	A display instruction for area geometry.

	TextInstruction
	TEXT_INSTRUCTION
	A display instruction for text representation.

[bookmark: _Toc321410466]Expression package
[bookmark: _Toc321410467]General introduction
Expressions are a combination of constants, variables, operators, and operations. An expression can be evaluated and the result will be returned as a value.
For example the term ‘1 + 2’ consists of two integer literals connected with the addition operator. The value of the expression is of type integer and has the value 3.
The term ‘x < 42’ has the variable x and the integer literal 42 connected with the less than operator. The expression is of type Boolean and the result will depend of the current value of the variable x. Assuming x has the value of 107.33 the value of the expression will be false. In the last example the operands of the operator does not have the same type (integer versus double). But the types are comparable and therefore the expression is valid.
[bookmark: _Toc321410468]Representation of expressions
Often an expression is represented in a textual representation. In this case the expression must be well formed according to syntactical rules and a well defined grammar. Operators must have priorities and nested expressions must be possible.
For example the arithmetic expression 4 + 3 * 2 evaluates to 10 since the multiplication operator has a higher priority than the addition operator.
Using brackets to specify a nested expression we can write: (4 + 3) * 2 which of course will evaluate to 14.
This type of representation has the advantage that it can be relative easily read (and written) be humans. Machines need software called syntax parser to decompose it into its parts and structure it in a form a machine can cope with.
Such a structure is the tree structure. An expression can be represented as a tree. A tree consists of a root node. Each node can have children which are also nodes and can therefore have children et cetera. For an expression we limit the number of children per node to 2. In this case we call the tree a binary tree.
Looking at the two expressions in this section the corresponding trees will look as follows:
[image:]
In this representation operation do not need priorities and the syntactical rules for nested expressions are not needed as well.
The tree representation can be directly stored in hierarchical data encapsulations like XML. If the trees are more complex than in the example above the readability for humans becomes very low.

[bookmark: _Toc321410469]The data model
The following UML diagram shows the main model of the expression.
[image:]
Expression
This class is the abstract base class of all types of expressions. Each expression has an evaluate operation which calculates the value of the expression and returns it.
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Expression
	Abstract base class for an expression.
	-
	-

	Operation
	evaluate
	Calculates the value of the expression and returns it.
	-
	Type

Literal
A literal is a constant value. Its type must be a simple type.
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Literal
	A constant value.
	-
	-

	Attribute
	value
	The value of the literal.
	1
	SimpleType

	Operation
	evaluate
	Returns just the value.
	-
	SimpleType

Variable
A variable is an instance of a certain type that stores a value. The value can be assigned by an assignment statement. Inside an expression the variable represents its value.
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Variable
	Class represents an instance of a data type.
	-
	-

	Attribute
	id
	An identifier that identifies the variable uniquely within its scope.
	1
	String

	Role
	value
	The value which is assigned to the variable.
	1
	Value

	Operation
	evaluate
	Returns the value of the variable.
	-
	Type

Value
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Value
	Class stores the value of a data type
	-
	-

	Attribute
	value
	The value of the specific data type.
	1
	Type

Unary operator
This is the abstract base class for unary operators. Unary operators have exactly one argument and define a specific operation on the value of that argument.
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	UnaryOperator
	Abstract base class for unary operators
	-
	-

	Role
	argument
	The argument of the operator.
	1
	Expression

Binary operator
This is an abstract base class for binary operators. Binary operators have exactly two arguments and combine their values by a specific operation. The order of the arguments may be meaningful for some derived classes.
Note: The types of the arguments may differ from the return type of the operator. The types of the arguments may also differ from each other. Details will be described for each derived class.
Binary operators in this context can be divided into the following groups:
1. Logical operators, both arguments and the return value are of type Boolean.
2. Comparison operators, the return type is Boolean, the types of the arguments can vary.
3. Arithmetic operators, arguments and return types must be numerical types.
4. The element operator which joins an instance of a complex type (scope) and an operation defined for that type.
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	BinaryOperator
	Abstract base class for binary operators
	-
	-

	Role
	argument1
	The first argument of the operator.
	1
	Expression

	Role
	argument2
	The second argument of the operator.
	1
	Expression

Operation
Operations are predefined methods that can be invoked inside an expression and will return a value.
Operation can have parameters and a scope. The scope is the instance of a complex type for that the operation will be invoked. This is similar to class methods in programming languages like Java or C++. The details of parameter and scopes will be given for the specific derived operations.
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Operation
	Abstract base class for operations
	-
	-

Context
The context is a container for variables that may be needed for the evaluation of an expression.
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Context
	A container for variables.
	-
	-

	Role
	variable
	The variables stored in the context.
	0..*
	Variable

[bookmark: _Toc321410470]Unary operators package
[bookmark: _Toc321410471]The data model
Two unary operators will be supported by this model: The logical NOT operator and the arithmetic unary minus operator. The model looks like:
[image:]

NotOperator
The not operator, also called negation, logically reverses its argument. I.e. if the argument has the value true it will return false and vice versa. The argument has to have the type Boolean. In mathematics it is denoted by: ¬x
UnaryMinusOperator
The unary minus operator returns the additive inverse of its argument. The additive inverse of a number x is a number that, when added to x, yields to 0. It can be calculated by multiplication with -1. The return type is the same as the type of the argument. The following simple types are supported:
· Integer
· Double
[bookmark: _Toc321410472]Binary operators package
[bookmark: _Toc321410473]Overview
Binary operators can be divided into Boolean and arithmetic operators. Boolean operators returns a Boolean value and can be further divided into logical and comparison operators. Arithmetic operators can have different return values, details will be provided for each operator.
The supported operators can be seen in the following diagram.
[image:]

[bookmark: _Toc321410474]Logical Operators
OrOperator
 (
Note: If the evaluation of the argument 1 (a) returns true, the evaluation of the argument 2 (b) will be skipped and true is returned immediately as the result of the operator. If the evaluation of the argument 1 (a) returns false the argument 2 (b) will be evaluated and this value will be returned as the result of the operator.
)The or-operator, also called disjunction, is a logical operator that combines two logical values a and b as seen in the following table:
	a
	b
	

	false
	false
	false

	false
	true
	true

	true
	false
	true

	true
	true
	true

AndOperator
The and-operator, also called conjunction, is a logical operator that combines two logical values according to the following table:
	a
	b
	 (
Note: If the evaluation of the argument 1 (a) returns false, the evaluation of the argument 2 (b) will be skipped and false is returned immediately as the result of the operator. If the evaluation of the argument 1 (a) returns true, the argument 2 (b) will be evaluted and this value will be returned as the result of the operator.
)

	false
	false
	false

	false
	true
	false

	true
	false
	false

	true
	true
	true

[bookmark: _Toc321410475]Relational Operators
EqualOperator
The equal operator is a comparison operator that return true if its two arguments are equal.
It is denoted by a = b; a and b are the both arguments. They must be of the same type or there must be a valid type conversion. The valid type conversions are.
	Type to be converted from
	Converted type
	Remarks

	Integer
	Double
	

	Date
	DateTime
	The time component will be T000000

NotEqualOperator
The not equal operator is a comparison operator that returns true if the values of its arguments are not equal. It can be defined by means of the not operator and the equal operator: ¬(a = b)
For the types the arguments the same rules applies as for the equal operator.
LessThanOperator
 The less than operator is a comparison operator that returns true if the value of argument 1 is less than the value of argument 2. A less than operator is defined for the following types.
· Integer
· Double
· Date
· Time
· DateTime
The type conversion for the equal operator does apply here too. For the types Date, Time and DateTime a value is less than another value when it points to an earlier point in time. All other comparision operators can be defined by means of equal operator, less than operator and not operator.
GreaterThanOperator
The greater than operator is a comparison operator that returns true if the argument 1 is greater than the argument b. It supports the same types and type conversions as the less than operator. It is defined by: b < a
LessThanOrEqualOperator
The less than or equal operator is a comparison operator that returns true if the argument 1 is less than or equal to the argument b. It supports the same types and type conversions as the less than operator. It is defined by: ¬(b < a)
GreaterThanOrEqualOperator
The greater than or equal operator is a comparison operator that returns true if the argument 1 is greater than or equal to the argument b. It supports the same types and type conversions as the less than operator. It is defined by: ¬(a < b)
[bookmark: _Toc321410476]Arithmetic Operators
AdditionOperator
The addition operator has several different meanings in an expression depending on the types of the arguments. It can arithmetically add two numbers, concatenate two strings or add a number of days to a date. The following table gives the details.
	Type of argument1
	Type of argument2
	Return type
	Remarks

	Integer
	Integer
	Integer
	Numerical addition.

	Integer
	Double
	Double
	Numerical addition.

	Double
	Integer
	Double
	Numerical addition.

	Double
	Double
	Double
	Numerical addition.

	String
	String
	String
	Concatenation of text strings.

	Date
	Integer
	Date
	Incrementing a calendar date by a number of days.

	DateTime
	Integer
	DateTime
	Incrementing a calendar date by a number of days. The time component of the DateTime value remains unchanged.

SubstractionOperator
The subtraction operator supports both arithmetic subtraction and decrementing a calendar date. The table shows the details.
	Type of argument1
	Type of argument2
	Return type
	Remarks

	Integer
	Integer
	Integer
	Numerical subtraction.

	Integer
	Double
	Double
	Numerical subtraction.

	Double
	Integer
	Double
	Numerical subtraction.

	Double
	Double
	Double
	Numerical subtraction.

	Date
	Integer
	Date
	Decrementing a calendar date by a number of days.

	DateTime
	Integer
	DateTime
	Decrementing a calendar date by a number of days. The time component of the DateTime value remains unchanged.

MultiplicationOperator
The multiplication operator supports the arithmetic multiplication of two numbers. Details are in the next table.
	Type of argument1
	Type of argument2
	Return type
	Remarks

	Integer
	Integer
	Integer
	Numerical multiplication.

	Integer
	Double
	Double
	Numerical multiplication.

	Double
	Integer
	Double
	Numerical multiplication.

	Double
	Double
	Double
	Numerical multiplication.

DivisionOperator
The division operator supports the arithmetic division of two numbers. If both arguments are of type Integer an integer division is performed and the integer part of the result will be returned.
For the mathematical definition of the integer division the floored division is used:
,

The quotient q is:
 (the largest integer not greater than)
and the reminder r yields to:

The division by 0 is not defined and the second argument must be different from 0.
More details are shown the following table.
	Type of argument1
	Type of argument2
	Return type
	Remarks

	Integer
	Integer
	Integer
	Integer division.
Examples:
5 / 2 = 2
-5 / 2 = -3
5 / -2 = -3
-5 / -2 = 2

	Integer
	Double
	Double
	Numerical division.

	Double
	Integer
	Double
	Numerical division.

	Double
	Double
	Double
	Numerical division.

ModuloOperator
This operator returns the reminder of a division of two integer numbers.
The mathematical definition is shown in the above section on division.
Examples:
5 mod 2 = 1
5 mod -2 = -1
-5 mod 2 = 1
-5 mod -2 = -1

[bookmark: _Toc321410477]ElementOperator
The element operator binds a scope object with an operation. The left argument must have a complex type and the right argument must be an operation defined for the scope type. The return value of the operator is the return value of the operation invoked for the scope object.
Example: Assuming that L is a container of type List L.size() will return the number of elements in this container. L is the scope object, size() is the operation and the element operator is denoted by ‘.’.

[bookmark: _Toc321410478]Operations package
[bookmark: _Toc321410479]Overview
The built in operations are divided into packages.
[image:]
There are operations without a scope and there are operations which have a scope object. For the latter there are abstract base classes in the model carrying the scope property.
The synopsis has to be read:
ReturnType operationName (
 ParameterType_1 parameterName1,
 ParameterType_2 parameterName2 := defaultValue_2, ...,
 ParameterType_n parameterName_n := defaultValue_n)
If an operation has default values for its parameters the parameters can be omitted. Parameters can be only omitted if no parameter with a value is behind them in the parameter list. With other words parameter can only be omitted from the end.

[bookmark: _Toc321410480]Mathematical operations
The next diagram shows the mathematical operations.
[image:]
The following table shows the details of the mathematical operations. They do not have a scope.
	Synopsis
	Description

	Integer round(Double x)
	Rounds x to the next integer.

	Integer floor(Double x)
	Returns the largest integer not greater than x. Denoted:
Examples:

	Integer ceil(Double x)
	Returns the smallest integer not less than x. Denoted:
Examples:

	Integer iabs(Integer x)
	Returns the absolute value of x.

	Double fabs(Double x)
	See above.

	Double sin(Double x)
	Returns the sine of x. The argument is in degrees.

	Double cos(Double x)
	Returns the cosine of x. The argument is in degrees.

	Double tan(Double x)
	Returns the tangent of x. The argument is in degrees.

	Double atan(Double x)
	Returns the inverse tangent of x.
The return value will be in degrees: -180 < d ≤ 180.

	Double atan2(
 Double x,
 Double y)
	Returns the inverse tangent of quotient
y is allowed to be 0 as long as x is not 0.
The return value will be in degrees: -180 < d ≤ 180.

	Double sqrt(Double x)
	Returns the square root of x. (x >= 0)

	Double exp(Double x)

	Returns the value of the exponentiation function
The generic exponentiation function ax can be calculated by :

	Double log(Double x)
	Returns the natural logarithm of x. (x > 0)

[bookmark: _Toc321410481]String operations
The next diagram shows the string operations.
[image:]
The following table shows the details of the string operations. They do not have a scope.
	Synopsis
	Description

	Integer length(String str)
	Returns the number of characters in the string str.

	String upper(String str)
	Returns str with all characters converted to upper case.

	String lower(String str)
	Returns str with all characters converted to lower case.

	String lower(
 String str1,
 String str2)
	Returns the concatenation of str1 and str2.

	String sub(
 String str,
 Integer idx,
 Integer len := -1)
	Returns the sub string of str starting at the index position idx and has the length len.
Remarks:
The first character has the index position 0. If idx is out of bounds an empty string is returned.
If len exceeds the end of the string the last characters of str starting at idx will be returned.

	String indexOf(
 String str,
 String regexp,
 Integer idx := 0)
	Returns the index position of the first match of the regular expression regexp in the string str, searching forward from index position idx.
Returns -1 if regexp didn't match anywhere.

	String lastIndexOf(
 String str,
 String regexp,
 Integer idx := -1)
	Returns the index position of the last match of the regular expression regexp in the string str, searching backward from index position idx.
Returns -1 if regexp didn't match anywhere.
If idx is negative the search starts from the end of str.

	String fromInteger(
 Integer num,
 Integer base := 10)
	Creates a string representing the integer number num using the numeral system with a radix base.

	String fromDouble(
 Double num,
 Integer decimals := 6)
	Creates a string representing the floating point number num in the form x.xx using not more than decimals decimal places.
Remarks:
Non significant 0 will be removed from the end.
fromDouble(2.0/3, 2) -> “0.67”
fromDouble(2.33, 4) -> “2.33”
fromDouble(2.0, 2) -> “2”

[bookmark: _Toc321410482]Operations for containers
Operations for lists
Lists are an ordered collection of data types. All elements in the list must be of the same type. In the following table the operation of a list will be shown. Note that the type ANY means the data type of the element. If the return type is Void the method will not return a value but changes the scope object.
The next diagram shows the operations for lists and the following table contains the details.
[image:]

	Synopsis
	Description

	Integer size()
	Returns the number of elements in the list.

	Void clear()
	Removes all elements from the list.

	Void fill(
 Integer num,
 ANY value)
	Fills the list with num elements of value. Note that existing elements will be removed or overwritten.

	ANY get(Integer idx)
	Returns the element at index position idx.

	Void set(
 Integer idx,
 ANY value)
	Sets the element at the index position idx to value.

	Void append(ANY value)
	Appends value at the end of the list.

	Void insert(
 Integer idx,
 ANY value)
	Inserts an element with value at the index position idx.

	Void remove(Integer idx)
	Removes the element at the index position idx.

Operations for sets
Sets are collections of elements without any particular order, and no repeated values. In the following table the operation of a list will be shown. Note that the type ANY means the data type of the element. If the return type is Void the method will not return a value but changes the scope object.
The next diagram shows the operations for sets and the following table contains the details.
[image:]

	Synopsis
	Description

	Integer size()
	Returns the number of elements in the set.

	Void clear()
	Removes all elements from the set.

	Boolean has(ANY value)
	Returns if value is a member of the set.

	Void insert(ANY value)
	Inserts value into the set.

	Void remove(ANY value)
	Removes value from the set.

	List[ANY] toList()
	Converts the set to a list

	Set[ANY] intersect(
 SET[ANY] other)
	Returns a set that is the intersection of this set and other.
The returned set will contain all elements that are both in this set and in other.

	SET[ANY] union(
 SET[ANY] other)
	Returns a set that is the union of this set and other.
The returned set will contain all elements that are either in this set, in other, or in both .

.

[bookmark: _Toc321410483]Operations for data access
Overview
The operations are subdivided in packages, for each complex type one package.
The next diagram shows the packages.
[image:]

Operations for the complex type Attributes
The complex type Attributes represents a collection of thematic attributes. Such a collection is part of:
· a feature type
· an information type
· a complex attribute
· a feature association
· an information association
· a data set
The default value represents an empty collection.
The following operations are supported for expressions of type Attributes.
[image:]

	Synopsis
	Description

	Boolean isValid()
	Returns if the scoped object represents a valid attribute set.

	Integer size()
	Returns the number of distinct attributes, i.e. attributes that have a different code. The number of instances for each attribute code can be obtained by count.

	Integer code(Integer idx)
	Returns the code of the attribute at the index position idx. (0 ≤ idx < size())

	Integer name(Integer idx)
	Returns the code of the attribute at the index position idx. (0 ≤ idx < size())

	Integer count(String code)
	Returns the number of instances of the attribute with the code code.

	Boolean hasValue(
 String code,
 Integer idx := 0)
	Returns if the value of the specified attribute is valid.
0 ≤ idx < count(code)

	String textValue(
 String code,
 Integer idx := 0,
 String default := “”)
	Returns the text value of an attribute. If the attribute does not exists or has no value the operation returns default.
Note: The attribute must be of catalogue type ‘text’ or ‘enumeration’. In the latter case the name of the enumeration value will be returned.

	Integer integerValue(
 String code,
 Integer idx := 0,
 Integer default := 0)
	Returns the integer value of an attribute. If the attribute does not exists or has no value the operation returns default.
Note: The attribute must be of catalogue type ‘integer’ or ‘enumeration’.

	Double doubleValue(
 String code,
 Integer idx := 0,
 Double default := 0.0)
	Returns the floating point value of an attribute. If the attribute does not exists or has no value the operation returns default.
Note: The attribute must be of catalogue type ‘real’.

	Boolean booleanValue(
 String code,
 Integer idx := 0,
 Boolean default := FALSE)
	Returns the Boolean value of an attribute. If the attribute does not exists or has no value the operation returns default.
Note: The attribute must be of catalogue type ‘boolean’.

	Date dateValue(
 String code,
 Integer idx := 0,
 Date default := invalidDate)
	Returns the date value of an attribute. If the attribute does not exists or has no value the operation returns default.
Note: The attribute must be of catalogue type ‘date’.

	Time timeValue(
 String code,
 Integer idx := 0,
 Time default := invalidTime)
	Returns the time value of an attribute. If the attribute does not exists or has no value the operation returns default.
Note: The attribute must be of catalogue type ‘time’.

	DateTime dateTimeValue(
 String code,
 Integer idx := 0,
 DateTime default :=
 invalidDateTime)
	Returns the dateTime value of an attribute. If the attribute does not exists or has no value the operation returns default.
Note: The attribute must be of catalogue type ‘dateTime’.

	ComplexAttribute complexValue(
 String code,
 Integer idx := 0,
 COMPLEX_ATTRIBUTE default :=
 invalidComplexAttribute)
	Returns the complex value of an attribute. If the attribute does not exists or has no value the operation returns default.
Note: The attribute must be a complex attribute.

Operations for the abstract type Object
The operations defined for the abstract type Object are available for all non abstract types derived from the type Object. These are:
· FeatureType
· InformationType
· GMObject
· GMPoint
· GMPointSet
· GMCurve
· GMCompositeCurve
· GMSurface
[image:]

	Synopsis
	Description

	Boolean isValid()
	Returns if the scoped object represents a valid object.

	Integer informationCount()
	Returns the number of information associations for this object.

	InformationType informationType(
 Integer idx)
	Returns the information type that is related by means of the information association at the index position idx.

	InformationAssociation
 informationAssociation(
 Integer idx)
	Returns the information association at the index position idx.

	String informationRoleCode(
 Integer idx)
	Returns the code of the role for the information association at the index position idx.

	String informationRoleName(
 Integer idx)
	Returns the name of the role for the information association at the index position idx.

	DataSet dataSet()
	Returns the data set the object belongs to.

Operations for the abstract type NamedObject
The operations defined for the abstract type NamedObject are available for all non abstract types derived from the type NamedObject. These are:
· FeatureType
· InformationType
[image:]
	Synopsis
	Description

	Attributes attributes()
	Returns the attribute collection of the named type.

	String code()
	Returns the alpha code of the named type.

	String name()
	Returns the name of the named type.

Operations the complex type FeatureType
The complex type FeatureType represents an instance of a feature type in a data set.
The default value represents a non valid feature type.
The following operations are supported for expressions of type FeatureType.
Please note that operations from the packages ObjectOperations and NamedObjectOperations are also supported for the complex type FeatureType.
[image:]
	Synopsis
	Description

	Integer geometryCount()
	Returns the number of spatial objects the feature type is related to.

	GMObject geometry(
 Integer idx)
	Returns the spatial object at the index position idx.

	Integer geometryScamin(
 Integer idx)
	Returns the denominator of the minimum scale for that the feature type is related to the spatial object at index position idx.

	Integer geometryScamax(
 Integer idx)
	Returns the denominator of the maximum scale for that the feature type is related to the spatial object at index position idx.

	Boolean isGeometryReverse(
 Integer idx)
	Returns true if the spatial object at index position idx is used in its reverse direction.

	Integer featureCount()
	Returns the number of feature associations for the scope feature type.

	FeatureType featureType(
 Integer idx)
	Returns the feature type that is related by means of the feature association at the index position idx.

	FeatureAssociation
 featureAssociation(
 Integer idx)
	Returns the feature association at the index position idx.

	String featureRoleCode(
 Integer idx)
	Returns the code of the role for the feature association at the index position idx.

	String featureRoleName(
 Integer idx)
	Returns the name of the role for the feature association at the index position idx.

Operations for the complex type InformationType
The complex type InformationType represents an instance of an information type in a data set.
The default value represents a non valid information type.
There are no additional operations defined for this type; all operations from the package ObjectOperations and NamedObjectOperations are supported.

Operations for the complex type ComplexAttribute
The complex type ComplexAttribute represents an instance of a complex attribute. A complex attribute is a collection of thematic attributes.
The default value represents a complex attribute with an empty collection.
The following operations are supported for expressions of type ComplexAttribute.
[image:]

	Synopsis
	Description

	Boolean isValid()
	Returns if the scoped object represents a valid complex attribute.

	Attributes subAttributes()
	Returns the attribute collection of the complex attributes.

Operations for the complex type DataSet
The complex type DataSet represents a geographic data set according to the S-100 data model.
The default value represents an empty data set.
The following operations are defined for expressions of type DataSet.
[image:]
	Synopsis
	Description

	Boolean isValid()
	Returns if the scoped object represents a valid data set.

	Attributes attributes()
	Returns the attribute collection of the data set. (Meta information)

	List[FeatureType] allFeatureTypes()
	Returns all feature types of the data set.

	List[FeatureType] allInformationTypes()
	Returns all information types of the data set.

Operations for the complex type GMObject
The type GMObject represents all different spatial object types that may occur in a data set. The interface allows the access to such information that is common to all spatial types. It also allows obtaining the type of the spatial object. Furthermore it can be converted to a specific complex type for this spatial object.
The default value represents a non valid spatial object.
The following operations are defined for expressions of type GMObject. All operations from the package ObjectOperations are supported as well.
[image:]
	Synopsis
	Description

	Boolean isPoint()
	Returns whether the object is a point object or not.

	GMPoint toPoint()
	Transforms the object to a point object. isPoint() must return TRUE.

	Boolean isPointSet()
	Returns whether the object is a point set object or not.

	GMPointSet toPointSet()
	Transforms the object to a point set object. isPointSet() must return TRUE.

	Boolean isCurve()
	Returns whether the object is a (non composite) curve object or not.

	GMCurve toCurve()
	Transforms the object to a (non composite) curve object. isCurve() must return TRUE.

	Boolean isCompositeCurve()
	Returns whether the object is a composite curve object or not.

	GMCompositeCurve toCompositeCurve()
	Transforms the object to a composite curve object. isCompositeCurve() must return TRUE.

	Boolean isSurface()
	Returns whether the object is a surface object or not.

	GMSurface toSurface()
	Transforms the object to a surface object. isSurface() must return TRUE.

Operations for the complex type GMPoint
Instances of GMPoint are zero-dimensional spatial objects in a data set. They are located at a geographic position and may carry a third coordinate for depths or heights.
The following operations are defined for expressions of type GMPoint. All operations from the package ObjectOperations are supported as well.
[image:]
	Synopsis
	Description

	Integer dimension()
	Returns the dimension of the point (2 or 3)

	Double coordinate(Integer d)
	Returns the coordinate of point for the dimension d.
Note: d is 1, 2, or 3

Operations for the complex type GMPointSet
Instances of GMPointSet are collections of zero-dimensional spatial objects. All elements of the set have the same dimension and share the set of association to information types.
The following operations are defined for expressions of type GMPointSet. All operations from the package ObjectOperations are supported as well.
[image:]

	Synopsis
	Description

	Integer dimension()
	Returns the dimension of the point set (2 or 3)

	Integer pointCount()
	Returns how many tuples are stored in the point set.

	GMPoint point(Integer idx)
	Returns the point at the index position idx.

Operations for the complex type GMCurve
Instances of the GMCurve are one-dimensional spatial objects in a data set. Curves are bounded by points. The geometry is defined by segments. The type GMCurve does not support access to this geometry information.
The following operations are defined for expressions of type GMCurve. All operations from the package ObjectOperations are supported as well.
[image:]
	Synopsis
	Description

	GmPoint start()
	Returns the boundary point at the beginning of the curve.

	GmPoint end()
	Returns the boundary point at the end of the curve.

Operations for the complex type GMCompositeCurve
Instances of GMCompositeCurve are one-dimensional spatial objects in a data set. They are an ordered collection of curves or other composite curves. This complex type has an interface to get all curve elements of the collection.
The following operations are defined for expressions of type GMCompositeCurve. All operations from the package ObjectOperations are supported as well.
[image:]
	Synopsis
	Description

	List<GMCurve> curves()
	Returns all curves the composite is made of. If an element is composite itself, this operation is automatically called recursively.

Operations for the complex type GMSurface
Instances of GMSurface are two-dimensional spatial objects in a data set. Surfaces are bounded by curves. They may contain any number of holes.
The following operations are defined for expressions of type GMSurface. All operations from the package ObjectOperations are supported as well.
[image:]
	Synopsis
	Description

	List<GMCurve> boundary(
 Boolean outerOnly = FALSE)
	Returns the curves the form the boundary of the surface. If outerOnly is true only the curves of the outer boundary is returned.

Operations for the complex type FeatureAssociation
Feature associations describe the relationship of one feature type to another feature type. The relationship is further characterized by a role and optional by a set of attributes.
The following operations are defined for expressions of type FeatureAssociation.
[image:]
	Synopsis
	Description

	Boolean isValid()
	Returns if the scoped object represents a valid feature association.

	Attributes attributes()
	Returns the attribute collection of the feature association.

	String code()
	Returns the alpha code of the feature association.

	String name()
	Returns the name of the feature association.

	String role1Code()
	Returns the alpha code of the first role used by the feature association.

	String role1Name()
	Returns the name of the first role used by the feature association.

	String role2Code()
	Returns the alpha code of the second role used by the feature association.

	String role2Name()
	Returns the name of the second role used by the feature association.

Operations for the complex type InformationAssociation
Information associations describe the relationship of an object in a data set to an information type. The relationship is further characterized by a role and optional by a set of attributes.
The following operations are defined for expressions of type InformationAssociation.
[image:]

	Synopsis
	Description

	Boolean isValid()
	Returns if the scoped object represents a valid information association.

	Attributes attributes()
	Returns the attribute collection of the information association.

	String code()
	Returns the alpha code of the information association.

	String name()
	Returns the name of the information association.

	String roleCode()
	Returns the alpha code of the role used by the information association.

	String roleName()
	Returns the name of the role used by the information association.

[bookmark: _Toc321410484]Operations for the Graphics package
Overview
The operations for the Graphics package are divided in sub packages. The following diagram shows the packages.
[image:]
Operations for the complex type Point
A Point is a zero-dimensional geometric object in a two dimensional Cartesian coordinate space. It has two coordinates, x and y. The actual coordinate system depends on the context in which the point is used.
The default value has the x and y coordinate set to 0.
The following operations can be used to define and query an object of type Point.
[image:]

	Synopsis
	Description

	Double x()
	Returns the x-coordinate

	Double y()
	Returns the y-coordinate

	Void setX(Double x)
	Sets the x-coordinate

	Void setY(Double y)
	Sets the y-coordinate

Operations for the complex type Vector
A (geometric) Vector is a geometric object that has both a magnitude and a direction. In this model a Vector is limited to the two dimensional Cartesian coordinate space. It is defined by two coordinates, x and y, representing its length and direction according to the axes of the coordinate system.
The following operations can be used to define and query an object of type Vector.
[image:]

	Synopsis
	Description

	Double x()
	Returns the x-coordinate

	Double y()
	Returns the y-coordinate

	Void setX(Double x)
	Sets the x-coordinate

	Void setY(Double y)
	Sets the y-coordinate

Operations for the complex type Color
The complex type Color represents a colour used within the graphic package. See the section on the colour model for more details. A colour may be defined by a token (indirect colour) or by its components (direct colour).
The default value is a direct colour with red = 0, green = 0, blue = 0, and alpha = 0 (non transparent black).
The following operations can be used to define and query an object of type Color.
[image:]

	Synopsis
	Description

	Integer red()
	Returns the red component of the colour.
0 ≤ red() ≤ 255

	Integer green()
	Returns the green component of the colour.
0 ≤ green() ≤ 255

	Integer blue()
	Returns the blue component of the colour.
0 ≤ blue() ≤ 255

	Integer alpha()
	Returns the alpha value of the colour
0 ≤ alpha() ≤ 255
0 : opaque 255 : full transparent

	String token()
	Returns the token of the colour

	Void setRGBA(
 Integer red,
 Integer green,
 Integer blue,
 Integer alpha := 0)
	Sets the red, green, and blue component of the colour.

	Void setToken(String token)
	Sets the token of a colour defined by a colour scheme.

Operations for the complex type Pixmap
The type Pixmap represents a two dimensional array of pixels. The actual definition of the pixmap is done in an external file. This type contains the reference to that file. It allows also overriding all colours used within the pixmap.
The default value represents a none valid pixmap (there is no reference to a graphic definition file)
The following operations can be used to define and query an object of type Pixmap.
[image:]

	Synopsis
	Description

	String graphic()
	Returns the name of the graphic definition file

	Void setGraphic(String graphic)
	Sets the name of the graphic definition file.

	Void overrideColor (
 Color existing, Color new)
	Overrides the colour existing with the colour new.

	Void overrideAllColors (Color color)
	Overrides all none fully transparent colours with color.

Operations for the complex type Pen
The type Pen represents a drawing tool that draws lines. It is characterized by a colour and a width.
The default value is a pen with the default colour (black) and a width of 0.3 mm.
The following operations can be used to define and query an object of type Pen.
[image:]

	Synopsis
	Description

	Color color()
	Returns the colour of the pen.

	Double width()
	Returns the width of the pen in millimetres.

	Void setColor(Color color)
	Sets the colour of the pen.

	Void setWidth(Double width)
	Sets the width of the pen in millimetres.

Operations for the complex type ColorFill
The type ColorFill describes an area fill where the area is filled by one colour. The colour may have any level of transparency.
The default value uses the default colour (opaque black).
The following operations can be used to define and query an object of type ColorFill.
[image:]
	Synopsis
	Description

	Color color()
	Returns the colour of the colour fill.

	Void setColor(Color color)
	Sets the colour of the colour fill.

Operations for the complex type PixmapFill
A PixmapFill is an area fill, where the area is filled by a repeating pattern of a pixmap.
The default value is an empty area fill, i.e. no fill.
The following operations can be used to define and query an object of type PixmapFill.
[image:]

	Synopsis
	Description

	Pixmap pixmap()
	Returns the pixmap.

	Void setPixmap(Pixmap pixmap)
	Sets the pixmap.

Operations for the complex type SymbolFill
A SymbolFill is an area fill where the area is filled by a repeating pattern of one symbol. The pattern is defined by two vectors in the device coordinate system.
The default value is an empty fill, i.e. no fill.
The following operations can be used to define and query an object of type SymbolFill.
[image:]
	Synopsis
	Description

	Symbol symbol()
	Returns the symbol.

	Void setSymbol(Symbol symbol)
	Sets the symbol.

	Vector vector1()
	Returns the vector that defines the position to the next symbol in the first dimension of the fill pattern.

	Vector vector2()
	Returns the vector that defines the position to the next symbol in the second dimension of the fill pattern.

	Void setVector1 (Vector v)
	Sets the vector that defines the position to the next symbol in the first dimension of the fill pattern.

	Void setVector2 (Vector v)
	Sets the vector that defines the position to the next symbol in the second dimension of the fill pattern.

Operations for the complex type HatchFill
A HatchFill is an area fill defined by one or two sets of parallel lines. The lines are styled by a SimpleLineStyle. There are no public operations for this type.
Operations for the complex type Symbol
A Symbol is a two-dimensional graphic element. It can be based on a raster image or on a set of vectorized graphic primitives. The symbol graphic is stored in an external file. This type adds properties like a pivot point, a scale, or an orientation.
The default value is a symbol with no reference.
The following operations can be used to define and query an object of type Symbol.
[image:]

	Synopsis
	Description

	String graphic()
	Returns the name of the external definition file.

	Double orientation()
	Returns the orientation angle of the symbol. The value is measured in degrees clockwise from the reference direction.

	Integer orientationCRS()
	Returns which is the reference direction for the orientation value.
1 – True North
2 – Display Up
3 – Local Geometry

	Point pivot()
	Returns the pivot point of the symbol.

	Double scaleFactor()
	Returns the scale factor used for the depiction of the graphic.

	Void setGraphic(String graphic)
	Sets the name of the external definition file.

	Void setOrientation(
 Double orientation)
	Sets the value of the orientation angle.

	Void setOrientationCRS(
 Integer crs)
	Sets the reference direction for the orientation angle.

	Void overideColor(
 Color existing, Color new)
	Overrides the colour existing with the colour new.

	Void overideAllColors(
 Color color)
	Overrides all none fully transparent colours with the given colour.

	Void setPivot(Point pivot)
	Sets the pivot point of the symbol.

	Void setScaleFactor(
 Double scaleFactor)
	Sets the scale factor of the symbol.

Operations for the complex type SimpleLineStyle
A SimpleLineStyle describes a line which is either a solid or a dashed line.
The following operations can be used to define and query an object of type SimpleLineStyle.
[image:]
	Synopsis
	Description

	Pen pen()
	Returns the pen used for the line style.

	Double offset()
	Returns the offset of the line style.

	Void setPen(Pen pen)
	Sets the pen for the line style.

	Void setOffset(Double offset)
	Sets the offset of the line style.

Operations for the complex type ComplexLineStyle
A ComplexLineStyle describes a line with a complex pattern including symbols and non linear geometry.
The following operations can be used to define and query an object of type ComplexLineStyle.
[image:]
	Synopsis
	Description

	String graphic()
	Returns the name of the external graphic file that describes the complex line style.

	Double scaleFactor()
	Returns the scale factor used for the depiction of the graphic.

	Void setGraphic(
 String graphic)
	Sets the name of the external definition file.

	Void overrideColor(
 Color existing, Color new)
	Overrides the colour existing with the colour new.

	Void overrideAllColors(
 Color color)
	Overrides all none fully transparent colours with the given colour.

	Void setScaleFactor(
 Double scaleFactor)
	Sets the scale factor of the line style.

Operations for the complex type Font
A Font describes the shape of characters for depicting them on a display device.
The following operations can be used to define and query an object of type Font.
[image:]
	Synopsis
	Description

	Boolean serifs()
	Returns if the font is using serifs or not.

	Integer weight()
	Returns the weight of the font:
1 – Light
2 – Medium
3 – Bold

	Integer slant()
	Returns the slant of the font:
1 – Upright
2 – Italics

	Integer proportion()
	Returns the proportion of the font:
1 – Monospaced
2 – Proportional

	Void setSerifs(
 Boolean serifs)
	Sets whether the font should use serifs or not.

	Void setWeight(
 Integer weight)
	Sets the weight of the font.

	Void setSlant(
 Integer slant)
	Sets the slant of the font.

	Void setProportion(
 Integer proportion)
	Sets the proportion of the font.

Operations for the complex type Text
For the depiction of text the text is composed of text elements. This type describes the common properties for the entire text. Each text element has more properties like the font, colour, e.t.c.
The following operations can be used to define and query an object of type Text.

[image:]

	Synopsis
	Description

	Double orientation()
	Returns the orientation angle of the text. The value is measured in degrees clockwise from the reference direction.

	Integer orientationCRS()
	Returns which is the reference direction for the orientation value.
1 – True North
2 – Display Up
3 – Local Geometry

	Vector offset()
	Returns the offset from the origin to the start of the text.

	Integer horizontalAlignment()
	Returns the horizontal alignment of the text:
1 – Left
2 – Right
3 – Centre

	Integer verticalAlignment()
	Returns the vertical alignment of the text:
1 – Top
2 – Bottom
3 – Centre

	Void setOrientation(
 Double orientation)
	Sets the value of the orientation angle.

	Void setOrientationCRS(
 Integer crs)
	Sets the reference direction for the orientation angle.

	Void setOffset(Vector offset)
	Sets the offset.

	Void setHorizontalAlignment(
 Integer alignment)
	Sets the horizontal alignment.

	Void setVerticalAlignment(
 Integer alignment)
	Sets the vertical alignment

	Integer textElementCount()
	Returns the number of text elements that belongs to the text.

	TextElement getTextElement(
 Integer idx)
	Returns the text element at index position idx.

	Void appendTextElement(
 TextElement element)
	Appends the text element element at the end of the text.

	Void insertTextElement(
 Integer idx,
 TextElement element)
	Inserts text element element at the index position idx into the text.

	Void removeTextElement(
 Integer idx)
	Removes the text element at index position idx from the text.

	Void removeAllTextElements()
	Removes all text elements from the text.

	Void setTextElement(
 Integer idx,
 TextElement element)
	Overwrites the text element at the index position idx with the text element element.

Operations for the complex type TextElement
A TextElement is a part of a text to be depicted.
The following operations can be used to define and query an object of type TextElement.
[image:]

	Synopsis
	Description

	String text()
	Returns the character string of the text element.

	Color foreground()
	Returns the foreground colour of the text element.

	Color background()
	Returns the background colour of the text element.

	Double bodySize()
	Returns the body size used for the text element in mm.

	Double verticalOffset()
	Returns the vertical offset of the text element in mm. Positive values means that the element is above the base line.

	List[Integer] flags()
	Returns the flags for that text element.

	Void setText(String text)
	Sets the character string of the text element.

	Void setForeground(Color color)
	Sets the foreground colour of the text element.

	Void setBackground(Color color)
	Sets the background colour of the text element.

	Void setBodySize(Double size)
	Sets the body size of the text element in mm.

	Void setVerticalOffset(
 Double offset)
	Sets the vertical offset of the text element in mm. Positive values means that the element is above the base line.

	Void addFlag(Integer flag)
	Add one flag to the text element. If the flag was already the operation does nothing.

	Void removeFlag(Integer flag)
	Removes a flag from the text element. If the flag was not set the operation does nothing.

	Void setFlags(List[Integer] flags)
	Sets the flags of the text element.

	Void clearFlags()
	Removes all flags from the text element.

[bookmark: _Toc321410485]Operations for the Presentation package
Overview
The operations for the Presentation package are divided in sub packages. The following diagram shows the packages.
[image:]

Operations for the complex type PortrayalCatalog
A portrayal catalogue contains all elements to create a depiction of a geographic data set.
The operations are allowing the access to such elements that are necessary within portrayal rules.
[image:]

	Synopsis
	Description

	Pen getPen(String id)
	Returns the pen with the given id.

	Pixmap getPixmap(String id)
	Returns the pixmap with the given id.

	Symbol getSymbol(String id)
	Returns the symbol with the given id.

	SimpleLineStyle
 getSimpleLineStyle(String id)
	Returns the simple line style with the given id.

	ComplexLineStyle
 getComplexLineStyle(String id)
	Returns the complex line style with the given id.

	ColorFill getColorFill(String id)
	Returns the colour fill with the given id.

	PixmapFill getPixmapFill(String id)
	Returns the pixmap fill with the given id.

	SymbolFill getSymbolFill(String id)
	Returns the symbol fill with the given id.

	HatchFill getHatchFill(String id)
	Returns the hatch fill with the given id.

Operations for the complex type Display

[image:]

	Synopsis
	Description

	Void addPointInstruction(
 PointInstruction instruction)
	Adds a point instruction to the display.

	Void addLineInstruction(
 LineInstruction instruction)
	Adds a line instruction to the display.

	Void addAreaInstruction(
 AreaInstruction instruction)
	Adds an area instruction to the display.

	Void addTextInstruction(
 TextInstruction instruction)
	Adds a text instruction to the display.

Operations for the complex type DisplayInstruction

[image:]

	Synopsis
	Description

	Void setFeature(FeatureType feature)
	Sets the feature type for that the instruction defines the depiction.

	Void setGeometry(GMObject geometry)
	Sets the spatial object that defines the geometry used for the depiction.

	Void setViewingGroup(
 String group)
	Sets the viewing group of the instruction.

	Void setDisplayPlane(
 String plane)
	Sets the display plane of the instruction.

	Void setDisplayPriority(
 Integer priority)
	Sets the display priority of the instruction.

Operations for the complex type PointInstruction

[image:]
	Synopsis
	Description

	Void setSymbol(
 Symbol symbol)
	Sets the symbol which should be depicted by the instruction.

Operations for the complex type LineInstruction

[image:]

	Synopsis
	Description

	Void setSimpleLineStyle(
 SimpleLineStyle line)
	Sets the line style which will be used for depiction of the instruction.

	Void setComplexLineStyle(
 ComplexLineStyle line)
	Sets the line style which will be used for depiction of the instruction.

Operations for the complex type AreaInstruction

[image:]

	Synopsis
	Description

	Void setColorFill(
 ColorFill colorFill)
	Sets the area fill used for the depiction of the instruction.

	Void setSymbolFill(
 SymbolFill symbolFill)
	Sets the area fill used for the depiction of the instruction.

	Void setPixmapFill(
 PixmapFill pixmapFill)
	Sets the area fill used for the depiction of the instruction.

	Void setHatchFill(
 HatchFill hatchFill)
	Sets the area fill used for the depiction of the instruction.

Operations for the complex type TextInstruction

[image:]

	Synopsis
	Description

	Void setText(Text text)
	Sets the text which should be depicted by the instruction.

[bookmark: _Toc321410486]Statement Package
[bookmark: _Toc321410487]Overview
A rule consists of a set of statements. In fact each rule has a body which is a statement itself.
The statements can be grouped into two categories.
1. Simple statements
2. Compound statements
Single statements are:
· Variable declaration
· Variable assignment
· Call statement
· Void statement
Compound statements describe the control flow of the rule. The following compound statements will be supported:
· Sequence statement
· Condition statement
· Loop statement
· Switch statement
The following UML diagram shows the model of the used statements.
[image:]
[bookmark: _Toc321410488]Elements of the model
[bookmark: _Toc321410489]Statement
This is the abstract base class of all statements. The only property is an operation ‘interpret’. That operation interprets the actual instance of the statement. For each sub class its behaviour will be different.
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	Statement
	Abstract base class for all statement
	-
	-

	Operation
	interpret(Context*)
	Describes how the statement has to be interpreted. The parameter references the context which is used during the interpretation.
	-
	void

[bookmark: _Toc321410490]Variable declaration
This statement declares a local variable by its identifier and its type. Optional an initial value can be defined. Local variable will be added to the context. They are valid in the scope of the sequence statement (block) where they are declared.
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	VariableDeclaration
	Statement that declares a local variable and optionally initializes it.
	-
	-

	Operation
	interpret(Context*)
	Adds the variable to the context. If required assigns an initial value to the variable. For this the value of the expression has to be evaluated and then this value will be assigned to the variable.
	-
	Void

	Role
	localVariable
	The variable to be declared.
	1
	Expressions::Variable

	Role
	scope
	The sequence statement where the variable is valid.
	1
	SequenceStatement

	Attribute
	initialValue
	The initial value to be assigned.
Note: the type of the expression and the type of the variable must be identical or there must be a valid conversion.
	0..1
	Expressions::Expression

	Attribute
	dataType
	The data type of the variable
	1
	String

[bookmark: _Toc321410491]Variable assignment
This statement assigns a value to an existing local variable.
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	VariableAssignment
	Statement that assigns a value to an existing local variable.
	-
	-

	Operation
	interpret(Context*)
	Assigns the value to the local variable. The value will be evaluated from the expression.
	-
	Void

	Role
	variable
	A reference to the (local) variable which get the new value.
	1
	Expressions::Variable

	Role
	value
	The value to be assigned.
Note: The type of the expression and the type of the variable must be identical or there must be a valid conversion.
	1
	Expressions::Expression

[bookmark: _Toc321410492]Call statement
This statement calls a sub routine and passes a list of parameters to it.
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	CallStatement
	Statement that calls a subrouting and passes a list of parameters to it.
	-
	-

	Operation
	interpret(Context*)
	Update the context of the sub routine and call the interprete method of that statement
	-
	Void

	Attribute
	rule
	The sub routine, a rule that will be invoked.
	1
	RuleSet::Rule

	Role
	parameter
	The ordered list of parameters.
Note: The type each expression must match the type of the corresponding formal parameter of the sub routine.
	0..*
	Expressions::Expression

[bookmark: _Toc321410493]Sequence statement
This statement is a compound statement that defines an ordered list of statements, the components. The control flow is defined by interpreting all components in the given order. If a variable declaration is one of the components the variable will be valid for all subsequent components of the sequence. If a variable with the same identifier already exists in the context, this variable will be hidden by the declared variable.
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	SequenceStatement
	Compound statement that defines an ordered list of sub statements.
	-
	-

	Operation
	interpret(Context*)
	Interprets all sub statements in their defined order. That means the ‘interpret’ operation of each component will be invoked.
	-
	Void

	Role
	component
	The ordered list of sub statements.
	1..*
{ordered}
	Statement

[bookmark: _Toc321410494]Condition statement
With the help of this statement the control flow can be split up into two branches depending whether a Boolean expression evaluates to true or false. The first case (‘then’ branch or consequent) one Statement has to be defined, the statement for both the second case (‘else’ branch or alternative) is optional.
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	ConditionStatement
	Compound statement that splits up the control flow in two branches depending on the result of a Boolean expression.
	-
	-

	Operation
	interpret(Context*)
	The ‘if’ expression will be evaluated. If the result is true the ‘interpret’ operation of the ‘then’ statement will be called. If the result is false and the ‘else’ statement is defined the ‘interpret’ method of the ‘else’ statement will be invoked.
	-
	Void

	Attribute
	if
	The Boolean expression that defines the condition.
	1
	Expressions::Expression

	Role
	then
	The statement that will be interpreted when the ‘if’ expression evaluates to true.
	1
	Statement

	Role
	else
	The statement that will be interpreted when the ‘if’ expression evaluates to false.
	0..1
	Statement

[bookmark: _Toc321410495]Loop statement
The loop statement is a compound statement where the interpretation of a statement will be repeated as long as a Boolean expression evaluates to true.
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	LoopStatement
	Compound statement that repeats the interpretation of a statement as long as a Boolean expression evaluates to true.
	-
	-

	Operation
	interpret(Context*)
	1. The ‘while’ expression will be evaluated.
2. If the result is false the interpretation stops.
3. If the result is true the ‘body’ statement will be interpreted and the interpretation repeats at point 1.
	-
	Void

	Attribute
	while
	The Boolean expression that defines whether the loop body will be interpreted or not.
	1
	Expressions::Expression

	Role
	body
	The statement that will be interpreted when the ‘while’ expression evaluates to true.
	1
	Statement

[bookmark: _Toc321410496]Switch statement
This statement can split up the control flow into several branches. The value of an expression will be compared with a number of ‘case’ constants. If the value matches one of the constants the corresponding statement will be interpreted. If the value of the expression does not match any of the ‘case’ constants an optional ‘default’ statement may be interpreted. The switch statement is used for convenience, in theory it can be replaced by a series of nested condition statements.
Note: All ‘case’ values must be distinct and of the same type. The type of the ‘switch’ expression must be comparable with the type of the ‘case’ values.
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	SwitchStatement
	Compound statement that splits up the control flow depending on the value of an expression.
	-
	-

	Operation
	interpret(Context*)
	1. The ‘switch’ expression will be evaluated.
2. The result will be compared with a number of ‘case’ values (constants)
3. If one ‘case’ value matches the ‘switch’ value the corresponding ‘case’ statement will be interpreted.
4. If none of the ‘case’ values matches the ‘switch’ value and a ‘default’ statement is defined, this statement will be interpreted
	-
	Void

	Role
	switch
	The expression that controls which statement will be interpreted.
	1
	Expression

	Role
	case
	The statement that will be interpreted when the corresponding ‘case’ value matches the ‘switch’ value.
	1..*
	Statement

	Association Class
	CaseValue
	References the constant value for the ‘case’ branch.
	-
	-

	Role
	Default
	The statement that will be interpreted when no ‘case’ value matches the ‘switch’ value.
	0..1
	Statement

[bookmark: _Toc321410497]CaseValue
This is an association class that links a list of literals to a case branch.
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	CaseValue
	The association class linking literals to a case branch.
	-
	-

	Role
	value
	The literals valid for this branch.
	1..*
	Expressions::Literal

[bookmark: _Toc321410498]Void statement
The void statement contains an expression. During the interpretation the expression is evaluated purely for its side effects. Examples are operations for scope objects which change the state of the scope object.
	Role Name
	Name
	Description
	Mult.
	Type

	Class
	VoidStatement
	Simple statement that contains an expression.
	-
	-

	Operation
	interpret(Context*)
	The expression will be evaluated purely for its side effects. The return value of the expression will be ignored.
	-
	Void

	Role
	expression
	The expression that will be evaluated.
	1
	Expressions::Expression

[bookmark: _Toc321410499]XML representation for a portrayal catalog
Description to be done.
The schema is in an external file PortrayalCatalog.xsd.

[bookmark: _Toc321410500]A script language for portrayal rules (informative)
[bookmark: _Toc321410501]The Backus-Naur-Form
The syntax of the script language for portrayal rule sets will be defined by means of the Backus-Naur-Form (BNF). A BNF specification is a set of rules having the form:
<symbol > ::== __expression__
<symbol> is a ‘nonterminal’ and __expression__ consists of one or more sequences of symbols; more sequences are separated by '|', indicating a choice, the whole being a possible substitution for the symbol on the left. Symbols that never appear on the left side are ‘terminals’.
An example:
The syntax of a date representation in ISO 8611 (YYYYMMDD) could be defined by BNF as follows:
 (
<date>

::== <year><month><day>
<year>

::== <digit><digit><digit><digit>
<month> ::==
 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12
<day> ::== 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 |
 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31
<digit> ::== 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
)
The example should read in English:
· A data is a year followed by a month followed by a day
· A year consists of exactly 4 digits
· A month is one of “01”, “02”, ...”12”
· A day is one of “01”, “02”, ... “31”
· A digit is one of ‘0’, ‘1’, ‘2’, ... ‘9’
Note that the syntax allows dates that are not valid. (e.g. 30. February). It is not the function of a syntax notation to describe semantics.
Another example shows how syntactical structures can be defined recursively by means of BNF. A recursive definition has the same nonterminal on the left and right side of the rule.
A comma separated list of integer numbers can be defined:
 (
<integer_list> ::== <integer> | <integer>,<integer_list>
<integer> ::== 0 | <positive_integer> | <negative_integer>
<positive_integer> ::== <non_zero_digit> | <positive_integer><digit>
<negative_integer> ::== -<positive_integer>
<non_zero_digit> ::== 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<digit> ::== 0 | <non_zero_digit>
)
It can be translated into:
· An integer list is either an integer or an integer followed by a comma and then followed by an integer list.
· An integer is one of: 0, a positive integer or a negative integer.
· A positive integer is either a non zero digit or a positive integer followed by a digit
(note that a zero can never be the first digit)
· A negative integer is a minus sign followed by a positive integer
· A non zero digit is one of ‘1’, ‘2’, ‘3’, ... ‘9’
· A digit either ‘0’ or a non zero digit
Note:
· The integer numbers are not allowed to have leading ‘0’s
· The list may have only one element but is never empty
· Digits are defined by another rule as in the first example. Nevertheless both rules describe exactly the same syntax.
Valid lists would be:
· 0
· 1,2,4
· 0,-1,-2
Not valid lists would be:
· 0,
· ,1,3
· 1,02,-0

[bookmark: _Toc321410502]Modifications to the Backus-Naur-Form
The following modifications of the BNF will be used in this standard to improve the readability of the rules and avoid ambiguities.
· Terminals will be enclosed in double quotes (").
· The double quote sign is defined by the nonterminal <quote>.
· A range of one character terminals can be defined with the minus sign (-) e.g. "A"-"Z" for all capital Latin characters.
· The nonterminal <char> is used for all characters from the character set except the double quote (") and the backslash (\).
The second example would now look like:
 (
<integer_list> ::== <integer> | <integer>
"
,
"
<integer_list>
<integer> ::==
"
0
"
 | <positive_integer> | <negative_integer>
<positive_integer> ::== <non_zero_digit> | <positive_integer><digit>
<negative_integer> ::==
"
-
"
<positive_integer>
<non_zero_digit> ::==
"
1
"-"
9
"
<digit> ::==
"
0
"
 | <non_zero_digit>
)

[bookmark: _Toc321410503]The expression syntax
Expressions in a portrayal rule set have the following syntax:
 (
<expression> ::== <term> | <expression> <binary_operator> <term>
<term> ::==
"("
 <expression>
")"
 | <unary_operator> <term> | <value>
<value> ::== <literal> | <variable> | <operation>
<binary_operator> ::==
"."
 |
"&"
 |
"|"
 |
"="
 |
"!="
 |
"<"
 |
"<="
|
">"
 |
">="
 |

"+"
 |
"-"
 |
"*"
 |
"/"
 |
"%"
<unary_operator> ::==
"-"
 |
"!"
<literal> ::== <text_literal> | <boolean_literal> | <number> | <date_or_time>
<variable> ::== <identifier>
<operation> ::== <identifier>(<parameter_list>)
<text_literal> ::== <quote><quote> | <quote><char_sequence><quote>
<boolean_literal> ::==
"TRUE"
 |
"FALSE"
<number> ::== <integer_number> | <floating_point_number>
<date_or_time> ::==
"@"
<date>
"@"
 |
"@"
<time>
"@"
 |
"@"
<date>
"T"
<time>
"@"
<identifier> ::== <non_digit> | <identifier><non_digit> | <identifier><digit>
<parameter_list> ::== <expression> | <parameter_list>
","
 <expression>
<integer> ::== <digit_sequence>
<floating_point_number> ::== <fractional_const> | <digit_sequence><exponent_part> |
 <fractional_const><exponent_part>
<date> ::== <year>
"-"
<month>
"-"
<day> | <year><month><day>
<time> ::== <hour>
":"
<minute>
":"
<second> | <hour><minute><second>
<non_digit> ::==
"A"
-
"Z"
 |
"a"
-
"z"
 |
"_"
<
digit
>
 ::==
"0"
-
"9"
<
digit_0-5
>
 ::==
"0"
-
"5"

<
sexagesimal_number
>
 ::== <digit_0-5><digit>
<
digit_sequence
>
 ::== <digit> | <digit_sequence><digit>
<fractional_const> ::== <digit_sequence>
"."
<digit_sequence> |
"."
<digit_sequence>
<exponent_part> ::== <exponent_char><digit_sequence> |
 <exponent_char><sign><digit_sequence>
<
exponent_char
>
 ::==
"e"
 |
"E"
<
sign
>
 ::==
"+"
 |
"-"
<
year
>
 ::== <digit><digit><digit><digit>
<
month
>
 ::==
"01"
 |
"02"
 |
"03"
 |
"04"
 |
"05"
 |
"06"
 |
"07"
 |
"08"
 |
"09"
 |

"10"
 |
"11"
 |
"12"
<
day
>
 ::==
"01"
 |
"02"
 |
"03"
 |
"04"
 |
"05"
 |
"06"
 |
"07"
 |
"08"
 |
"09"
 |

"10"
 |
"11"
 |
"12"
 |
"13"
 |
"14"
 |
"15"
 |
"16"
 |
"17"
 |
"18"
 |

"19"
 |
"20"
 |
"21"
 |
"22"
 |
"23"
 |
"24"
 |
"25"
 |
"26"
 |
"27"
 |

"28"
 |
"29"
 |
"30"
 |
"31"
<
hour
>
 ::==
"00"
 |
"01"
 |
"02"
 |
"03"
 |
"04"
 |
"05"
 |
"06"
 |
"07"
 |
"08"
 |

"09"
 |
"10"
 |
"11"
 |
"12"
 |
"13"
 |
"14"
 |
"15"
 |
"16"
 |
"17"
 |

"18"
 |
"19"
 |
"20"
 |
"21"
 |
"22"
 |
"23"

<
minute
>
 ::== <sexagesimal_number>
<second> ::== <sexagesimal_number>
<char_sequence> ::== <char> | <esc_sequence> | <char_sequence><char> |
 <char_sequence><esc_sequence>
<esc_sequence> ::==
"\"
<quote> |
"\\"
)

[bookmark: _Toc321410504]The rule set syntax

 (
<ruleset>
::==
"
RULESET
"

<identifier>

"
{
"
 <rule_list>
"
}
"
 |

"
RULESET
"

<identifier>

"
{
"
 <variable_list> <rule_list>
"
}
"
<variable_list>
::== <variable_declaration> | <variable_list><variable_declaration>
<r
ule_list>
::== <rule> | <rule_list><rule>
<rule>
::== <rule_header> <sequence_statement>
<rule_header>
::==
"
RULE
"
 <identifier>
"
()
"
 |

"
RULE
"
 <identifier>
"
(
"

<formal_parameter_list>

"
)
"
 |

"
RULE
"
 <identifier>
"
(
"

<set_of_dataset_parameter>
"
)
"

"
:
"

"
INIT
"

|

"
RULE
"
 <identifier>
"
(
"

<set_of_dataset_parameter>
"
)
"

"
:
"

"
FINISH
"

|

"
RULE
"
 <identifier>
"
(
"

<dataset_parameter>
"
)
"

"
:
"

"
INIT
"

|

"
RULE
"
 <identifier>
"
(
"

<dataset_parameter>
"
)
"

"
:
"

"
FINISH
"

|

"
RULE
"
 <identifier>
"
(
"

<
feature_parameter
>

"
)
"

"
:
"
 <
feature_
code_list
>
<feature_parameter> ::==
"IN"

"
FEATURE_TYPE
"

<identifier>
<dataset_parameter> ::==
"IN"

"
DATA_SET
"

<identifier>
<set_of_dataset_parameter> ::==
"IN"

"
SET
"

"
[
"

"
DATA_SET
"

"
]
"

<identifier>
<formal_parameter_list> ::== <formal_parameter> | <formal_parameter_list>
","
<formal_parameter>
<formal_parameter> ::== <formal_parameter_type> <type_name> <identifier>
<formal_parameter_type> ::==
"IN"
 |
"OUT"

<
feature_
code_list> ::== <feature_code> | <feature_code_list>
","
<feature_code>
<
feature_
code> ::== <non_digit> | <digit> | <feature_code><non_digit> |
 <feature_code><digit>
<statement> ::== <sequence_statement> | <condition_statement> |
 <variable_declaration> | <loop_statement> | <switch_statement> |
 <variable_assignment> | <call_statement> |
<void_statement>
<statement_list> ::== <statement> | <statement_list> <statement>
<sequence_statement> ::==
"{" "}"
 |
"{"
<statement_list>
"}"
<condition_statement> ::==
"IF"

"("
<expression>
")"
 <statement> |

"IF"

"("
<expression>
")"
 <statement>
"ELSE"
 <statement>
<variable_declaration> ::==
"VAR"
 <type_name> <identifier>
";"
 |

"VAR"
 <type_name> <identifier>
":="
 <expression>
";"
<variable_assignment> ::== <identifier>
":="
 <expression>
";"
<switch_statement> ::==
"SWITCH"

"("
<expression>
")"

"{"
 <case_branches>
"}"
 |

"SWITCH"

"("
<expression>
")"

"{"
 <case_branches>

<default_branch>
 "}"
<loop_statement> ::==
"WHILE"

"("
<expression>
")"

"DO"
 <statement>
<call_statement> ::==
"CALL"
 <identifier>
"(" ")" ";"
 |

"CALL"
 <identifier>
"("
<parameter_list>
")" ";"
<simple_type_name> ::==
"INTEGER"
 |
"DOUBLE"
 |
"BOOLEAN"
 |
"STRING"
 |
"DATE"
 |
"TIME"
 |

"DATETIME"
<
data_access_types
> ::==
"FEATURE_TYPE"
 |
"INFORMATION_TYPE"
 |
"COMPLEX_ATTRIBUTE"
|
 "DATA_SET"
|
"GM_OBJECT"
|
"GM_POINT"
|
"GM_POINTSET"
|

"GM_CURVE"
|
"GM_COMPOSITE_CURVE"
|
"GM_SURFACE"
|

"FEATURE_ASSOCIATION"
|
"INFORMATION_ASSOCIATION "
<graphics_types> ::==
"
POINT
"
 |

"
VECTOR
"
 |

"
COLOR
"
 |

"
PIXMAP
"
 |

"
PEN
"
 |

"
COLOR_FILL
"
 |

"
PIXMAP_FILL
"
 |

"
SYMBOL_FILL
"
 |

"
HATCH_FILL
"
 |

"
SYMBOL
"
 |

"
SIMPLE_LINE_STYLE
"
 |

"
COMPLEX_LINE_STYLE
"
 |

"
FONT
"
 |

"
TEXT
"
 |

"
TEXT_ELEMENT
"
<presentation_types> ::==
"
PORTRAYAL_CATALOG
"
 |

"
DISPLAY
"
 |

"
POINT_INSTRUCTION
"
 |

"
LINE_INSTRUCTION
"
 |

"
AREA_INSTRUCTION
"
 |

"
TEXT_INSTRUCTION
"
<complex_type_names> ::== <data_access_types> | <graphics_types> | <presentation_types>
<container_type_name> ::==
"LIST"

"["
<type_name>
"]"
 |
"SET"

"["
<type_name>
"]"
<type_name> ::== <simple_type_name> | <complex_type_name> | <container_type_name>
<case_branches> ::== <case_branch> | <case_branches> <case_branch>
<case_branch> ::==
"CASE"

"("
<literal_list>
")"
 <statement>
<default_branch> ::==
"DEFAULT"
<statement>
<literal_list> ::== <literal> | <literal_list>
","
<literal>
<void_statement> ::== <expression>
"
;
"
)

[bookmark: _Toc321410505]Comments
Comments can be used in the script. The comment must start with ‘/*’ and must end with ‘*/’ (C-style comments).
[bookmark: _Toc321410506]Include directives
To improve the readability of a script the can be split into many single files. The contents of one file can be included in another file by means of an include directive.
The syntax is:
#include <file_name>
Where file_name is the name of the file to be included.

[bookmark: _Toc321410507]Example – A small rule set
This example contains two feature rules, one for cardinal beacons and another one for depth areas.
A sub rule is called from each feature rule.
First we show the script for the entire rule set, using include directives to include the single rules. There are a couple of variables declared for the rule set. Hose (global) variables can be accessed from any rule of the rule set.
 (
RULESET
 TESTSET
{

VAR

DISPLAY
 display;

VAR

PORTRAYAL_CATALOG
 catalog;

VAR

DOUBLE
 shallowContour := 2.0;

VAR

DOUBLE
 safetyContour := 5.0;

VAR

DOUBLE
 deepContour := 20.0;

VAR

DOUBLE
 safetyDepth := 5.0;

VAR

BOOLEAN
 twoShades :=
FALSE
;
 VAR
BOOLEAN

shallowPattern

:=
TRUE
;
#include <bcncar01>
#include <depare>
#include <seabed01>
#include <
text01
>
}
/* RULESET */
)

The feature rule for cardinal beacons (file “bcncar01”)
 (
/* FEATURE RULE FOR CARDINAL BEACONS */
RULE
 BCNCAR01(
IN

FEATURE_TYPE
 feature) : BeaconCardinal
{

VAR

SYMBOL
 symbol;

VAR

POINT_INSTRUCTION
 instruction;
 instruction.setFeature(feature);
 instruction.setViewingGroup(
"17020"
);
 instruction.setDisplayPlane((
"O"
);
 instruction.setDisplayProiority(80);

VAR

INTEGER
 catcam := feature.attributes().integerValue(
"CATCAM"
, 0, 0);

VAR
STRING
 objnam := feature.attributes().textValue(
"OBJNAM"
, 0,
""
);

VAR

INTEGER
 num := feature.geometryCount();

VAR

INTEGER
 i := 0;

WHILE
 (i < num)
 {

VAR

GM_OBJECT
 gobj := feature.geometry(i);

IF
 (gobj.isPoint())
 {
 instruction.setGeometry(gobj);

VAR

STRING
 symbolName;

SWITCH
 (catcam)
 {

CASE
 (1)
 symbol
Name

:
=
"BCNCAR01"
;

CASE
 (2)

symbol
Name
:
=
"BCNCAR02"
;

CASE
 (3)

symbol
Name
:
=
"BCNCAR03"
;

CASE
 (4)

symbol
Name
:
=
"BCNCAR04"
;

DEFAULT

symbol
Name
:
=
"BCNCAR13"
;
 }

/* SWITCH */

symbol := catalog.getSymbol(symbolName);
 instruction.setSymbol(symbol);
 display.add
Point
Instruction(instruction);

IF
 (length(objnam) > 0)
 {

VAR

TEXT_INSTRUCTION
 textInstruction;
 textInstruction.setFeature(feature);
 textInstruction.setGeometry(gobj);
 textInstruction.setViewingGroup(
"17020"
);
 t
extInstruction.setDisplayPlane(
"O"
);
 textInstruction.setDisplayProiority(80);

CALL
 TEXT01(textInstruction,
concatenate(
"bn "
, objnam)
);
 }

/*
IF (length(objnam) > 0)
*/
 }
/*
IF (gobj.isPoint())
 */

i := i + 1;
 }
/* WHILE */
}
/* BCNCAR01 */
)

The feature rule for depth areas (file “depare01”)
 (
/* FEATURE RULE FOR
DEPTH AREAS
 */
RULE
 DEPARE01(
IN

FEATURE_TYPE
 feature) : DepthArea
{

VAR

AREA_INSTRUCTION
 instruction;
 instruction.setFeature(feature);
 instruction.setViewingGroup(
"13030"
);
 instruction.setDisplayPlane((
"S"
);

VAR

DOUBLE
 drval1 := feature.attributes().doubleValue(
"DRVAL1"
, 0, -1);

VAR
DOUBLE
 drval2 :=
 feature.attributes().doubleValue(
"DRVAL2"
, 0, drval1+0.01);

VAR

INTEGER
 num := feature.geometryCount();

VAR

INTEGER
 i := 0;

WHILE
 (i < num)
 {

VAR

GM_OBJECT
 gobj :=
feature
.geometry(i);
 IF (gobj.isSurface())
 {
 instruction.setGeometry(gobj);

CALL
 SEABED01(instruction, drval1, drval2);

}
 i := i+1;
 }
/* WHILE */
}
/* DEPARE01 */
)
The sub rule TEXT01 (file text01)
 (
RULE

TEXT01
(
IN

TEXT_INSTRUCTION

instruction,
IN

STRING

str)
{

VAR

COLOR

textColor
;
 textColor.setToken(
"
CHBLK
"
);

VAR

TEXT_ELEMENT

textElement
;
 textElement.setText(str);
 textElement.setForeground(textColor);
 textElement.setBodySize(3.5);

VAR

VECTOR

offset
;
 offset.setX(4.0);
 offset.SetY(-4.0);

VAR

TEXT

text
;
 text.setOffset(offset);
 text.setHorizontalAlignment(1);
/* LEFT ALIGNMENT */
 text.setVerticalAlignment(2);
/*
BOTTOM
 ALIGNMENT */
 text.appendTextElement(

textElement

);
 instruction.setText(text);
 display.addTextInstruction(instruction);

}
/*
TEXT01
 */
)

The sub rule SEABED01 (file “seabed01”)
 (
RULE
 SEABED01(
IN

AREA_INSTRUCTION
 areaInstruction,

IN

DOUBLE
 drval1,
IN

DOUBLE
 drval2)
{

VAR
BOOLEAN
 shallow :=
TRUE
;

VAR

COLOR
 color;
 color.setToken(
"DEPIT"
);

IF
 ((drval1 >= 0) & (drval2 > 0))
 color.setToken(
"DEPVS"
);

IF
 (twoShades)
 {

IF
 ((drval1 >= safetyContour) & (drval2 > safetyContour))
 {
 color.setToken(
"DEPDW"
);
 shallow :=
FALSE
;
 }
 }

ELSE
 {

IF
 ((drval1 >= shallowContour) & (drval2 > shallowContour))
 color.setToken(
"DEPMS"
);

IF
 ((drval1 >= safetyContour) & (drval2 > safetyContour))
 {
 color.setToken(
"DEPMD"
);
 shallow :=
FALSE
;
 }

IF
 ((drval1 >= deepContour) & (drval2 > deepContour))
 {
 color.setToken(
"DEP
DW
"
);
 shallow :=
FALSE
;
 }
 }

VAR

COLOR_FILL
 colorFill;
 colorFill.setColor(color);
 areaInstruction.setColorFill(colorFill);
 areaInstruction.setDisplayPriority(1
0
);
 display.addAreaInstruction(areaInstruction);

IF
 (shallowPattern &
 shallow)
 {

PIXMAP
_FILL
 diamond
:
= catalog.getPixmap
Fill
(
"DIAMOND01"
);
 areaInstruction.setPixmapFill(
diamond
);
 areaInstruction.setDisplayPriority(11);
 display.addAreaInstruction(areaInstruction);
 }
/* SHALLOW */
}
/* SEABED01 */
)

image5.jpeg

image6.jpeg

image7.jpeg

image8.jpeg

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

image14.jpeg

image15.jpeg

image16.jpeg

image17.jpeg

image18.jpeg

image19.jpeg

image20.jpeg

image21.jpeg

image22.jpeg

image23.jpeg

image24.jpeg

image25.jpeg

image26.jpeg

image27.jpeg

image28.jpeg

image29.jpeg

image30.jpeg

image31.jpeg

image32.jpeg

image33.jpeg

image34.jpeg

image35.jpeg

image36.jpeg

image37.jpeg

image38.jpeg

image39.jpeg

image40.jpeg

image41.jpeg

image42.jpeg

image43.jpeg

image44.jpeg

image45.jpeg

image46.jpeg

image47.jpeg

image48.jpeg

image49.jpeg

image50.jpeg

image51.jpeg

image52.jpeg

image53.jpeg

image54.jpeg

image1.jpeg

image55.jpeg

image56.jpeg

image57.jpeg

image58.jpeg

image59.jpeg

image60.jpeg

image61.jpeg

image62.jpeg

image63.jpeg

image64.jpeg

image2.jpeg

image65.jpeg

image66.jpeg

image67.jpeg

image68.jpeg

image69.jpeg

image70.jpeg

image71.jpeg

image3.jpeg

image4.jpeg

