# DRAFT Version 1.1 Standards for Digital Tide and Tidal Current Tables

The following is a list of fundamental attributes that digital tide prediction tables should have.

## A. General Guidelines for all types of Digital Tide and Tidal Current Tables

- The issuing office should provide documentation on how to install or read the electronic tables. This information should be provided in either hardcopy written form (for example, on a separate sheet of paper or on the cover of a CD or other media), or electronically in a plain ASCII text 'readme.txt' type of file.

- The issuing office should provide its formal name, mailing address, web url and point of contact information on the cover of the media. It should also provide information anproducing the tables (including both address and website), information on how to obtain annual updates, and how to obtain interim updates or errata information.

- There should be a statement outlining minimum computer system requirements,

- There should be user license and/or condition of use information.

- There should be a statement concerning the standing of the digital tables as meeting the

applicable maritime regulations, either SOLAS and/or local country carriage requirements.

- Information on how to obtain product support should be provided.

## **B.** Digital Tide Tables

Digital tide predictions can follow one of two formats.

## 1. Scanned image of Tide Tables:

This format consists of scanned images of the paper tide tables. This format should have the following attributes.

a. Should be a faithful reproduction of all the pages of printed tide tables.

b. The images should be formatted in a widely available, common format. Examples formats include, but not limited to, PDF, tiff, Jpeg, Gif. If PDF files are provided, then information on how to download Adobe<sup>©</sup> Reader must be provided.

c. If multiple books are published, then each book should be located within its own folder.

d. No modification of the scanned images is permitted.

## 2. Electronically Generated Tide Predictions

a. Station Selection: Can either be map based or list based, organized by water body

b. Station InformationStation NameBody of Water Descriptor (if appropriate)Station Number (as appropriate)

Latitude and Longitude (degrees:min:sec and tenths? or decimal equivalent using GIS convention with western and southern hemispheres as being negative latitude and longitude)

Location Map with nearby prediction stations identified.

c. Earth-Moon-Sun Astronomical Calendar Information (Tabular and/or integrated with graphical data output)

d. Sunrise/Sunset Calendar Information (Tabular and/or integrated with graphical data output)

e. Datum reference for all predicted data

Default Reference Datum is the Chart Datum used by the Country. Ability to reference predictions to LAT if not the default Reference Datum. Ability to reference predictions to other tidal datums (such as HAT, MHW, MSL) and user identified datum such as a national geodetic datum or other coastal engineering or threshold datums.

f. Data displays and tables in Metric or English units, with default depending upon country

g. Time Zone display with Local Standard Time as default, with user selected option for UTC/GMT, daylight savings time, etc.

h. Source of tidal predictions is provided via links to metadata information: Harmonic Constants or Time and Range Correction to Reference Station Dates of Harmonic Analyses time series used to create the set of Harmonic Constants used in the prediction.

Links to list of the Harmonic Constants used in the Prediction

Dates of the observations used to create tabular time and height corrections (for Table 2 or secondary port stations) to a reference Station.

i. Ability to obtain graphical and tabular output for desired time period (historical and into the future) for:

Time series at minimum 1- hour increments.

Times and heights of predicted high and low tides.

Time series plots non-harmonic stations using curve fit to times and heights of high and low waters

j. Ability to obtain output in common formats such as PDF, TXT, XML, CSV, S-112 single point formats

k. Links to text files that contain special warning notes explaining areas of anomalous tidal conditions, special datums, or tidal based hazards to navigations (dual high or low waters, tidal bores, river flow dependencies and river datums, frequent non-tidal conditions, etc..)

1. Estimates of uncertainty in the predicted times and heights of high and low waters.

#### 3. Graphical Display of Electronic Tide Predictions

If the product contains graphical representations of tidal predictions, they should follow the following recommendations. The objective of these recommendations is not to prescribe specific graphical views but rather to identify common elements that transcend all types of graphs.

- a. All axes should be clearly labelled
- b. The default datum should be the same as chart datum for the location of the prediction
- c. The tidal height units default should be the same as the country's printed tables.
- d. The display should include station information (as defined above)
- e. The display should include information on the source authority organization.
- f. The display should have the option to view the tide prediction numerical values used to create the graphic.

## **C. Digital Tidal Currents Tables**

Digital Tidal Current Tables can be in the same two formats as Tide Tables and many of the same requirements that apply to digital tide tables should pertain to tidal current tables.

#### 1. Scanned image of Tidal Current Tables:

This format consists of scanned images of the paper tide tables. This format should have the following attributes.

a. Should be a faithful reproduction of all the pages of printed tide tables.

b. The images should be formatted in a widely available, common format. Examples formats include, but not limited to, PDF, tiff, Jpeg, Gif. If PDF files are provided, then information on how to download Adobe<sup>©</sup> Reader must be provided.

c. If multiple books are published, then each book should be located within its own folder.

d. No modification of the scanned images is permitted.

#### 2. Electronically Generated Tidal Current Predictions

a. Station Selection: Can either be map based or list based, organized by water body

b. Station InformationStation NameBody of Water Descriptor (if appropriate)Station Number (as appropriate)

Depth of prediction, with the descriptor that the depth is either from the surface down or from the bottom up.

Latitude and Longitude (degrees:min:sec and tenths? or decimal equivalent using GIS convention with western and southern hemispheres as being negative latitude and longitude)

Location Map with nearby prediction stations identified.

c. Earth-Moon-Sun Astronomical Calendar Information (Tabular and/or integrated with graphical data output)

d. Sunrise/Sunset Calendar Information (Tabular and/or integrated with graphical data output)

e. If applicable, Flood and ebb direction (True North) Datum reference for all predicted data

f. Data displays and tables in Metric or English units, with default depending upon country

g. Time Zone display with Local Standard Time as default, with user selected option for UTC/GMT, daylight savings time, etc.

h. Source of tidal predictions is provided via links to metadata information: Harmonic Constants or Time and Range Correction to Reference Station Dates of Harmonic Analyses time series used to create the set of Harmonic Constants used in the prediction.

Links to list of the Harmonic Constants used in the Prediction

Dates of the observations used to create tabular time and height corrections (for Table 2 or secondary port stations) to a reference Station.

i. Ability to obtain graphical and tabular output for desired time period (historical and into the future) for:

Time series at minimum 1- hour increments.

Times and heights of predicted high and low tides.

Time series plots non-harmonic stations using curve fit to times and heights of high and low waters

j. Ability to obtain output in common formats such as PDF, TXT, XML, CSV, S-112 single point formats

k. Links to text files that contain special warning notes explaining areas of anomalous current conditions, or tidal based hazards to navigations (e.g. tidal bores, river flow dependencies, frequent non-tidal conditions, etc..)

1. Estimates of uncertainty in the predicted times and heights of high and low waters.

## 3. Graphical Display of Electronic Tide Current Predictions

If the product contains graphical representations of tidal predictions, they should follow the following recommendations. The objective of these recommendations is not to prescribe specific graphical views but rather to identify common elements that transcend all types of graphs.

- g. All axes should be clearly labelled
- h. The default datum should be the same as chart datum for the location of the prediction
- i. The tidal height units default should be the same as the country's printed tables.
- j. The display should include station information (as defined above)
- k. The display should include information on the source authority organization.
- 1. The display should have the option to view the tide prediction numerical values used to create the graphic.

# USA - NOAA Example Scanned Tide Table

|                |                                     |                            |                               | Albany, New York, 2015<br>Times and Heights of High and Low Waters |                                     |                            |                              |                |                                     |                            |                              |                                |                    |                            |                |                                     |                          |                             |                                       |                               |                        |  |
|----------------|-------------------------------------|----------------------------|-------------------------------|--------------------------------------------------------------------|-------------------------------------|----------------------------|------------------------------|----------------|-------------------------------------|----------------------------|------------------------------|--------------------------------|--------------------|----------------------------|----------------|-------------------------------------|--------------------------|-----------------------------|---------------------------------------|-------------------------------|------------------------|--|
|                | January                             |                            |                               |                                                                    |                                     |                            |                              |                | February                            |                            |                              |                                |                    |                            |                | March                               |                          |                             |                                       |                               |                        |  |
|                | Time                                | He                         | ight                          |                                                                    | Time H                              |                            | eight                        |                | Time                                | Height                     |                              | Tim                            | н                  | Height                     |                | Time                                | He                       | light                       | Time                                  | He                            | eight                  |  |
| 1<br>ħ         | h m<br>0048<br>0741<br>1317<br>2026 | 5.1<br>-0.3<br>5.5<br>-0.4 | om<br>155<br>-9<br>168<br>-12 | <b>1</b> 6                                                         | h m<br>0026<br>0705<br>1241<br>2006 | 4.2<br>0.4<br>5.0<br>0.4   | 0m<br>128<br>12<br>152<br>12 | 1<br>Su        | h m<br>0214<br>0859<br>1435<br>2145 | 5.2<br>-0.1<br>5.4<br>-0.3 | 0m<br>158<br>-3<br>165<br>-9 | 16 014<br>083<br>135<br>212    | 6 0.3<br>5.6       | cm<br>146<br>9<br>171<br>3 | 1<br>Su        | h m<br>0102<br>0743<br>1324<br>2029 | 5.4<br>0.5<br>5.5<br>0.1 | om<br>165<br>15<br>168<br>3 | 16 0023<br>0715<br>1230<br>2006       | n<br>5.1<br>0.9<br>5.7<br>0.7 | 155<br>27<br>174<br>21 |  |
| 2              | 0142<br>0833<br>1407<br>2120        | 5.1<br>-0.3<br>5.5<br>-0.4 | 155<br>_9<br>168<br>_12       | 17<br>Sa                                                           | 0121<br>0803<br>1331<br>2101        | 4.3<br>0.3<br>5.2<br>0.2   | 131<br>9<br>158<br>6         | 2<br>M         | 0302<br>0946<br>1519<br>2230        | 5.2<br>-0.1<br>5.4<br>-0.3 | 158<br>-3<br>165<br>-9       | 17 023<br>Tu 093<br>144<br>221 | 0.1<br>5.7         | 152<br>3<br>174<br>-3      | 2<br>M         | 0153<br>0834<br>1413<br>2117        | 5.5<br>0.4<br>5.6<br>0.1 | 168<br>12<br>171<br>3       | 17 0120<br>Tu 0817<br>1333<br>2059    | 5.4<br>0.6<br>5.9<br>0.5      | 165<br>18<br>180<br>15 |  |
| 3<br>Sa        | 0233<br>0922<br>1454<br>2210        | 5.1<br>-0.3<br>5.6<br>-0.5 | 155<br>-9<br>171<br>-15       | <b>18</b><br>Su                                                    | 0211<br>0858<br>1417<br>2153        | 4.4<br>0.1<br>5.4<br>0.0   | 134<br>3<br>165<br>0         | 3<br>Tu<br>O   | 0348<br>1030<br>1600<br>2313        | 5.2<br>0.0<br>5.4<br>-0.2  | 158<br>0<br>165<br>-6        | 18 032<br>₩ 102<br>● 230       | -0.2               | 162<br>-6<br>180<br>-6     | <b>3</b><br>Tu | 0241<br>0922<br>1457<br>2201        | 5.6<br>0.4<br>5.6<br>0.1 | 171<br>12<br>171<br>3       | 18 0212<br>W 0915<br>1428<br>2150     | 5.7<br>0.3<br>6.0<br>0.3      | 174<br>9<br>183<br>9   |  |
| 4<br>Su<br>O   | 0321<br>1009<br>1538<br>2256        | 5.1<br>-0.2<br>5.5<br>-0.4 | 155<br>-6<br>168<br>-12       | 19<br>M                                                            | 0257<br>0952<br>1503<br>2243        | 4.6<br>-0.1<br>5.6<br>-0.2 | 140<br>-3<br>171<br>-6       | <b>4</b><br>w  | 0431<br>1112<br>1640<br>2352        | 5.1<br>0.1<br>5.3<br>-0.1  | 155<br>3<br>162<br>-3        | 19 040<br>Th 111<br>235        | -0.3               | 165<br>-9<br>180<br>-9     | 4<br>w         | 0325<br>1006<br>1538<br>2241        | 5.7<br>0.4<br>5.6<br>0.1 | 174<br>12<br>171<br>3       | 19 0300<br>Th 1009<br>2239            | 6.0<br>0.1<br>6.2<br>0.1      | 183<br>189<br>3        |  |
| 5<br>M         | 0408<br>1054<br>1621<br>2341        | 5.0<br>-0.1<br>5.4<br>-0.3 | 152<br>-3<br>165<br>-9        | 20<br>Tu                                                           | 0343<br>1044<br>1549<br>2331        | 4.8<br>-0.2<br>5.7<br>-0.4 | 146<br>-6<br>174<br>-12      | 5<br>Th        | 0513<br>1152<br>1718                | 5.1<br>0.2<br>5.2          | 155<br>6<br>158              | 20 045<br>F 121<br>F 171       | 5.6<br>-0.4<br>5.9 | 171<br>-12<br>180          | 5<br>Th<br>O   | 0406<br>1049<br>1617<br>2319        | 5.7<br>0.4<br>5.5<br>0.3 | 174<br>12<br>168<br>9       | 20 0347<br>F 1610<br>• 2326           | 6.2<br>-0.1<br>6.2<br>0.1     | 189<br>-3<br>189<br>3  |  |
| 6<br>Tu        | 0454<br>1136<br>1702                | 4.9<br>0.1<br>5.3          | 149<br>3<br>162               | 21<br>W                                                            | 0430<br>1136<br>1639                | 4.9<br>-0.4<br>5.7         | 149<br>-12<br>174            | <b>6</b><br>F  | 0029<br>0553<br>1231<br>1754        | 0.0<br>5.0<br>0.3<br>5.1   | 0<br>152<br>9<br>155         | 21 004<br>Sa 054<br>130<br>181 | 5.6                | -9<br>171<br>-9<br>177     | <b>6</b><br>F  | 0444<br>1130<br>1654<br>2354        | 5.6<br>0.4<br>5.4<br>0.4 | 171<br>12<br>165<br>12      | 21 0435<br>5a 1154<br>1702            | 6.3<br>-0.1<br>6.1            | 192<br>-3<br>186       |  |
| 7<br>w         | 0022<br>0540<br>1216<br>1742        | -0.2<br>4.8<br>0.2<br>5.1  | -6<br>146<br>6<br>155         | 22<br>Th                                                           | 0018<br>0520<br>1227<br>1733        | -0.5<br>5.0<br>-0.4<br>5.7 | -15<br>152<br>-12<br>174     | 7<br>Sa        | 0104<br>0632<br>1310<br>1826        | 0.2<br>5.0<br>0.5<br>5.0   | 6<br>152<br>15<br>152        | 22 012<br>Su 064<br>135        | 5.6                | -6<br>171<br>-6<br>171     | 7<br>Sa        | 0520<br>1209<br>1728                | 5.6<br>0.5<br>5.3        | 171<br>15<br>162            | 22 0013<br>Su 0523<br>1245<br>1756    | 0.2<br>6.3<br>0.0<br>6.0      | 192<br>192<br>183      |  |
| <b>8</b><br>Th | 0103<br>0625<br>1255<br>1822        | 0.0<br>4.7<br>0.4<br>5.0   | 0<br>143<br>12<br>152         | 23<br>F                                                            | 0106<br>0612<br>1320<br>1830        | -0.5<br>5.1<br>-0.4<br>5.6 | -15<br>155<br>-12<br>171     | <b>8</b><br>Su | 0137<br>0706<br>1350<br>1851        | 0.3<br>5.0<br>0.6<br>4.9   | 9<br>152<br>18<br>149        | 23 021<br>M 073<br>145<br>201  | 5.6                | -3<br>171<br>-3<br>168     | <b>8</b><br>Su | 0027<br>0550<br>1249<br>1757        | 0.5<br>5.6<br>0.6<br>5.2 | 15<br>171<br>18<br>158      | 23 0100<br>M 0615<br>1337<br>1853     | 0.3<br>6.2<br>0.1<br>5.8      | 9<br>189<br>3<br>177   |  |
| 9<br>F         | 0141<br>0710<br>1334<br>1901        | 0.1<br>4.6<br>0.5<br>4.9   | 3<br>140<br>15<br>149         | 24<br>Sa                                                           | 0154<br>0708<br>1414<br>1931        | -0.5<br>5.2<br>-0.4<br>5.5 | -15<br>158<br>-12<br>168     | 9<br>M         | 0208<br>0730<br>1434<br>1924        | 0.4<br>5.0<br>0.7<br>4.8   | 12<br>152<br>21<br>146       | 24 030<br>Tu 083<br>154<br>211 | 0.1                | 3<br>171<br>3<br>165       | 9<br>M         | 0058<br>0607<br>1330<br>1821        | 0.6<br>5.7<br>0.7<br>5.2 | 18<br>174<br>21<br>158      | 24 0148<br>Tu 0710<br>1431<br>1951    | 0.5<br>6.1<br>0.3<br>5.7      | 15<br>186<br>9<br>174  |  |
| 10<br>Sa       | 0219<br>0755<br>1416<br>1940        | 0.2<br>4.6<br>0.6<br>4.8   | 6<br>140<br>18<br>146         | <b>25</b><br>Su                                                    | 0244<br>0806<br>1511<br>2032        | -0.4<br>5.2<br>-0.3<br>5.4 | -12<br>158<br>-9<br>165      | 10<br>Tu       | 0240<br>0752<br>1526<br>2009        | 0.5<br>5.1<br>0.8<br>4.6   | 15<br>155<br>24<br>140       | 25 040<br>W 164<br>O 221       | 0.2                | 168<br>162                 | 10<br>Tu       | 0129<br>0627<br>1414<br>1855        | 0.7<br>5.8<br>0.8<br>5.1 | 21<br>177<br>24<br>155      | 25 0238<br>W 0807<br>1526<br>2049     | 0.7<br>5.9<br>0.5<br>5.6      | 21<br>180<br>15<br>171 |  |
| 11<br>Su       | 0256<br>0839<br>1503<br>2021        | 0.3<br>4.6<br>0.7<br>4.6   | 9<br>140<br>21<br>140         | 26<br>M                                                            | 0336<br>0904<br>1610<br>2132        | -0.3<br>5.3<br>-0.2<br>5.2 | -9<br>162<br>-6<br>158       | 11<br>w        | 0320<br>0832<br>1627<br>2109        | 0.5<br>5.2<br>0.9<br>4.5   | 15<br>158<br>27<br>137       | 26 045<br>103<br>Th 174<br>230 | 3 0.3              | 12<br>165<br>9<br>158      | 11<br>W        | 0202<br>0704<br>1504<br>1942        | 0.8<br>5.8<br>1.0<br>5.0 | 24<br>177<br>30<br>152      | 26 0331<br>Th 0906<br>1622<br>2147    | 0.9<br>5.8<br>0.6<br>5.5      | 27<br>177<br>18<br>168 |  |
| 12<br>M        | 0334<br>0922<br>1559<br>2115        | 0.4<br>4.7<br>0.8<br>4.4   | 12<br>143<br>24<br>134        | 27<br>Tu                                                           | 0429<br>1002<br>1710<br>2231        | -0.3<br>5.3<br>-0.1<br>5.1 | -9<br>162<br>-3<br>155       | 12<br>Th       | 0413<br>0923<br>1733<br>2234        | 0.7<br>5.2<br>0.9<br>4.4   | 21<br>158<br>27<br>134       | 27 055<br>F 113<br>184         | 3 5.4              | 15<br>165<br>9             | 12<br>Th       | 0245<br>0751<br>1602<br>2041        | 0.9<br>5.8<br>1.1<br>4.9 | 27<br>177<br>34<br>149      | 27 0426<br>F 1005<br>F 1718<br>O 2245 | 1.0<br>5.6<br>0.7<br>5.5      | 30<br>171<br>21<br>168 |  |
| 13<br>Tu<br>0  | 0416<br>1006<br>1701<br>2220        | 0.4<br>4.7<br>0.8<br>4.3   | 12<br>143<br>24<br>131        | 28<br>W                                                            | 0524<br>1101<br>1810<br>2330        | -0.2<br>5.3<br>-0.1<br>5.0 | -6<br>162<br>-3<br>152       | 13<br>F        | 0520<br>1028<br>1837<br>2348        | 0.7<br>5.2<br>0.8<br>4.4   | 21<br>158<br>24<br>134       | 28 000<br>Sa 123<br>193        | 0.5                | 162<br>15<br>165<br>6      | 13<br>F        | 0341<br>0844<br>1705<br>2201        | 1.0<br>5.8<br>1.1<br>4.9 | 30<br>177<br>34<br>149      | 28 0522<br>Sa 1104<br>1814<br>2342    | 1.1<br>5.6<br>0.8<br>5.6      | 34<br>171<br>24<br>171 |  |
| 14<br>w        | 0507<br>1055<br>1806<br>2325        | 0.5<br>4.8<br>0.8<br>4.2   | 15<br>146<br>24<br>128        | 29<br>Th                                                           | 0620<br>1159<br>1908                | -0.1<br>5.3<br>-0.1        | -3<br>162<br>-3              | 14<br>Sa       | 0631<br>1149<br>1938                | 0.7<br>5.2<br>0.6          | 21<br>158<br>18              |                                |                    |                            | 14<br>Sa       | 0453<br>0947<br>1808<br>2318        | 1.1<br>5.6<br>1.1<br>4.9 | 34<br>171<br>34<br>149      | <b>29</b> 0619<br>Su 1202<br>1907     | 1.2<br>5.6<br>0.7             | 37<br>171<br>21        |  |
| 15<br>Th       | 0605<br>1148<br>1908                | 0.5<br>4.9<br>0.7          | 15<br>149<br>21               | <b>30</b>                                                          | 0028<br>0715<br>1255<br>2004        | 5.0<br>-0.1<br>5.3<br>-0.2 | 152<br>-3<br>162<br>-6       | 15<br>Su       | 0050<br>0736<br>1256<br>2034        | 4.5<br>0.5<br>5.4<br>0.4   | 137<br>15<br>165<br>12       |                                |                    |                            | 15<br>Su       | 0607<br>1110<br>1909                | 1.1<br>5.6<br>0.9        | 34<br>171<br>27             | 30 0037<br>M 0714<br>1256<br>1957     | 5.7<br>1.1<br>5.6<br>0.6      | 174<br>34<br>171<br>18 |  |
|                |                                     |                            |                               | <b>31</b><br>Sa                                                    | 0123<br>0808<br>1347<br>2057        | 5.1<br>-0.1<br>5.4<br>-0.3 | 155<br>165<br>-9             |                |                                     |                            |                              |                                |                    |                            |                |                                     |                          |                             | 31 0128<br>Tu 0806<br>1346<br>2043    | 5.9<br>1.0<br>5.7<br>0.6      | 180<br>30<br>174<br>18 |  |

Time meridian 75° W, 0000 is midnight. 1200 is noon. Times are not adjusted for Daylight Saving Time. Heights are referred to mean low water during lowest river stages which is the chart datum of scundings.

UK Example

## TWCWG Programme Matters - P.Stone 04/13/2017



#### Australian Example





No account is taken of Daylight Saving Time These predictions are identical to those published in ANTT and can thus be used as an official navigational publication. Prediction Datum is LAT, which may not be Chart Datum. Correction to Chart Oatum can be found at: Level / To Chart Datum Corrections and Zero of Predictions Window. © Copyright Commonwealth of Australia 2015 Sydney Observatory