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* Preparation for tsunami disaster management needs
estimating what may happen if tsunamis of various
heights hit a target area.

* Atsunami in the target area depends on not only a scale
of the tsunami generated, but also an area where the
tsunami is generated, because tsunamis are transformed
and deformed during their traveling in the sea, affected
by change of bathymetry and topography.

* We need bathymetric and topographic data detailed for
accurate estimation of tsunami hazards, especially in
regions of shallow water depth, where the wavelength of
a tsunami is not so long.
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The 2011 Tohoku Tsunami was deformed in Kuji Bay, Japan, affected by bathymetric change.

Captured from a video footage taken by the National Defense Force of Japan

Captured from a video footage taken by ,the Kamaishi Port Construction Office of MLIT, Japan




Tsunami Deformation
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Captured from a video footage taken by the Kamaishi Port Construction Office of MLIT, Japan )
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Increase of tsunami force acting on a structure

Not-deformed tsunami
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lkeno et al. (20006)

Profile of tsunami wave pressure acting a vertical wall
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Generation Condition of Undular Bore s
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Physics of Tsunamis ~C

Effect of water depth

Increase of tsunami height Change of propagation direction
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Refraction, Diffraction and Reflection
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 Not-uniform seafloor

« Existence of an island and coast

t= 60 min t= 180 min g
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Calculated propagation of the 2004 Indicant Ocean tsunami (Tomita & Honda 2006)
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Spatial Resolution ~C
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If the wavelength of a tsunami (L) is 100 km in the sea 1000 m

deep, the wave period (T)is 1,010 sec. (17 min.).

L=Tc=T+/gd

When this tsunami comes to the sea 20 m deep,
the wavelength decreases to[14 km
while wave height of the tsunami is § times higher than that of
the offshore tsunami.

L, . =1010x~/9.8% 20 = 14,140 (m) About 500 m grid spacing at
least, because the calculation
H d 1/4 1000\"* grids should be ensured at least
shallow :£ deep ] {—j =2.7 20 to 30 points per tsunami
H deep d shallow 20
wavelength.
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Spatial Resolution ~C

 Finer grid size of 1/100t" or less of tsunami wavelength
is recommended for calculation of a refracted tsunami

* In an opening section of breakwaters, the gird size
should be 1/5%" or less of width of the opening.

 On an area a tsunami runs up , the grid size should be
less than 7 x 10 *agT? (a, bottom slope, g,
gravitational acceleration, and T, wave period) , in the
case of consideration of bottom roughness with
Manning'’s coefficient, n=0.03 m-13s.
If T=600 s and a=0.002, the grid size is 5 m or less.

Bathymetric data with finer spatial resolution is required
In areas of shallower water depth, and near structures.

Tsunami Assessment Method for Nuclear Power Plants in Japan (JSCE 2002) 11
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 The 2011 Tohoku tsunami in Hachinohe port
« Wing and central sections of Hattaro North breakwater were
damaged by the tsunami_ Caisgons in 1,437 m were moved

and tilted among totally 3,504 m.
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Grid System

150 m grid

50 m gird
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Calculation conditions oL

* Applied model: STOC-ML (single layer)
« Grid system: Nested grid system
— 5 m grid spacing was applied in Hachinohe port.

* Integral time:

— 180 minutes in which the second tsunami arrives
Hachinohe port

Time interval: 0.1 s
Topography:

— Buildings are arranged in the computation field, based
on laser profiler data obtained before the disaster.

Tide condition

— Tide level at the arrival time of second wave, which is
highest tsunami in Hachinohe, is applied. (T.P.-0.1 m)
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Model by Takagawa & Tomita (2012)

— obtained from inversion analysis with tsunami
waveforms measured offshore by GPS-
mounted buoys and seabed-mounted
pressure gages

— provided tsunami inundation height near coast
line in Hachinohe well comparing with

measured height in post field surveys.
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Validation
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Considering destruction of the wing section of the breakwater at the time
that the tsunami broke the section in stability analysis of the breakwater,
the calculated tsunami waveform agreed well with an observed one at a
tide station in the port.
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Calculation Example 2 o
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* The 2011 Tohoku tsunami in Kuji port

« STOC-IC that is a non-hydrostatic and 3d model to
calculate tsunamis was applied for this tsunami.
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Tsunami Condition T

Kuiji bay
| Wave gage P STOC-IC
— An open boundary was set at the .\ off Kuji pot
east end of computational domain A

* a GPS-mounted buoy installed
offshore Kuji bay measured the

. GPS-
tsunami in the 2011 event. S0misE O mounted
— The measured tsunami profile was s buoy
numerically generated as the STOC-ML
incident tsunami. A N
200mis T | Open
: : . ™\ boundary
- Referring Inukai and 600MiET | for incident
Nagasawa (2012), the tsunami
normal incident (right angle Waveform observed and calculated off Kuji port

to the open boundary) is

not so bad assumption for — Meas.

this case.
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* The nested grid system was
applied, and the grid size in
the Kuji port area was 5 m.
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Calculation Results & = 02690 fea] 3
PhOtS STOC-IC

5 m grid spacing
11 layers with \\
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Captured from a video footage by Tohoku STOC-ML (single layer)

Regional Bureau of MLIT - 5m grid spacing i

Red strips: Short-period waves on the tsunami front in orange color '“
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Calculation Example 3 (.g
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The 2004 Indian Ocean tsunami in Galle, Sri Lanka

Bathymetric data: GEBCO 1.0-minute grid data & Nautical
Chart (data: 1/10,000 topographical digital map with structure
shape data 1/312,000 ~ 1/10,000; USA)

Topographic by Survey Department Srl Lanka, which includes
buildings. |

) grid size: 5’m
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Simulation for Tsunami Damage Estimation

102[min]

CG of a result of tsunami inundation and debris calculated by a tsunami
numerical simulation model of STOC
22



Expectation for Spatial Data Infrastructures é.é
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 Detailed data around shorelines and reefs

— Some treatments are needed to connect bathymetric
data to topographic one for calculation of tsunami
propagation and inundation.

— Aircraft-based hydrographic survey with green laser is
expected to obtain bathymetric data near shores.
 Integrated spatial data including both
bathymetric and topographic data

— It is better that buildings and infrastructures data are
iIncluded.

« We don’t have any special preparation for tsunami
calculation if such a data infrastructure is established.



Thank you for your attention!
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