S-100 Edition 2.0.0
 January 2015

S-100 Part 10c
HDF5 Data Model and File Format

Copyright Notice and License Terms for

HDF5 (Hierarchical Data Format 5) Software Library and Utilities

HDF5 (Hierarchical Data Format 5) Software Library and Utilities

Copyright 2006-2015 by The HDF Group.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities

Copyright 1998-2006 by the Board of Trustees of the University of Illinois.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted for any purpose (including commercial purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or materials provided with the distribution.

3. In addition, redistributions of modified forms of the source or binary code must carry prominent notices stating that the original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software are asked, but not required, to acknowledge that it was developed by The HDF Group and by the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign and credit the contributors.

5. Neither the name of The HDF Group, the name of the University, nor the name of any Contributor may be used to endorse or promote products derived from this software without specific prior written permission from The HDF Group, the University, or the Contributor, respectively.

DISCLAIMER:

THIS SOFTWARE IS PROVIDED BY THE HDF GROUP AND THE CONTRIBUTORS

"AS IS" WITH NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. In no event shall The HDF Group or the Contributors be liable for any damages suffered by the users arising out of the use of this software, even if advised of the possibility of such damage.

Contents
310c-1
Scope

310c-2
Conformance

310c-3
References

410c-4
Introduction

10c-1 Scope
The Hierachical Data Format 5 (HDF5) HDF has been developed by the HDFgroup as a file format for the transfer of data that is used for imagery and gridded data. This Part specifies an interchange format to facilitate the moving of files containing data records between computer systems. It defines a specific structure which can be used to transmit files containing data type and data structures specific to S-100.

10c-2 Conformance

This profile conforms to HDF5 as developed by the HDF Group.
10c-3 References

In order to fully implement this profile of HDF5 it may be necessary to download tools and software created by the HDF group. These can be found at www.hdfgroup.org.
10c-4 Introduction
The format of an HDF5 file on disk encompasses several key ideas of the HDF4 and AIO file formats as well as addressing some shortcomings therein. The new format is more self-describing than the HDF4 format and is more uniformly applied to data objects in the file.

An HDF5 file appears to the user as a directed graph. The nodes of this graph are the higher-level HDF5 objects that are exposed by the HDF5 APIs:

· Groups

· Datasets

· Named datatypes

At the lowest level, as information is actually written to the disk, an HDF5 file is made up of the following objects:

· A superblock

· B-tree nodes

· Heap blocks

· Object headers

· Object data

· Free space

The HDF5 library uses these low-level objects to represent the higher-level objects that are then presented to the user or to applications through the APIs. For instance, a group is an object header that contains a message that points to a local heap (for storing the links to objects in the group) and to a B-tree (which indexes the links). A dataset is an object header that contains messages that describe datatype, dataspace, layout, filters, external files, fill value, etc with the layout message pointing to either a raw data chunk or to a B-tree that points to raw data chunks.

S-102 HDF
A.1 Encoding Architecture
The current Bathymetric Surface product utilizes the Hierarchical Data Format version 5 or HDF5 as its encoding. HDF5 is an architecture-independent software library and file format that allows for the storage and retrieval of large, complex datasets. HDF5 files are organized in a hierarchical structure, with two primary structures; groups and datasets.

An HDF5 ―Group‖ provides the top-level structure for the data contents of the Bathymetric Surface product. The major subcomponents are defined using the HDF5 ―Dataset‖ types, and ―Attribute‖ types. Within each ―Dataset‖, further structural decomposition is specified via the DATATYPE and DATASPACE parameters. ―Attributes‖ are included were appropriate to provide ―Dataset‖ specific metadata. Following the high level file structure described in Figure 1, the specific HDF5 type definitions that define the BAG encapsulation structure are illustrated in Figure A1.

Group ―BAG_root‖ {Attribute ―BAG Version‖
Dataset ―metadata‖ {
DATATYPE
String
DATASPACE
1-dimension, 0-N

DATASET {―XML…‖} }
Dataset ―elevation‖ {
DATATYPE
Floating point 4bytes DATASPACE
2-dimensions, 0-N, 0-M DATASET {{}}

Attribute ―Minimum Elevation Value‖ Attribute ―Maximum Elevation Value‖
} }
Dataset ―uncertainty‖ {
DATATYPE
Floating point 4bytes DATASPACE
2-dimensions, 0-N, 0-M DATASET {{}}

Attribute ―Minimum Uncertainty Value‖ Attribute ―Maximum Uncertainty Value‖}
Dataset ―<optional>‖{
DATATYPE
Floating point 4bytes DATASPACE
2-dimensions, 0-N, 0-M DATASET {{}}}

Dataset ―tracking list‖ {
DATATYPE
bagTrackingListItem

DATASPACE
1-dimension, 0-N DATASET {}

Attribute ―Tracking List Length‖}
}
Dataset ―vertical datum corrrector‖ { DATATYPE
surfacecorrector DATASPACE
1-dimension, 0-N DATASET {}
}

Fig A1 - Structure of BAG Data Encoding using HDF5
Table A1 provides a description the Bathymetric Surface product HDF5 encoding root group.

Table A1 - BAG Root Group
	Entity Name
	Data Type
	Domain

	BAG Version
	String
	Maximum 32 bytes available

	Metadata
	Dataset
	Detailed in table A2

	Elevation
	Dataset
	Detailed in table A3

	Uncertainty
	Dataset
	Detailed in table A4

	tracking list
	Dataset
	Detailed in table A5, and in table A6

Table B2 defines the metadata items used within the BAG I/O library. These items must be present and properly defined for I/O operations to succeed. Note that this listing of metadata items does not specify the mandatory metadata items required by the ISO 19115 standard. The ―XML Tag Nesting‖ Column specifies the XML element within the ISO 19139 implementation of ISO 19115 where the values are to be defined. The full schema is distributed in the source tree.

Table A2 - Group Level Metadata – Grid Parameters
	Entity Name
	XML Tag Nesting
	Data Type
	Domain

	
	CoordSys
	
	
	
	

	Coordinate System code
	Reference System

Info/ projection/ Identifier/ code
	Non Null String
	Geodetic

GEOREF Geocentric Local_Cartesian MGRS

UTM UPS Albers_Equal_Area_Conic Azimuthal_Equidistant BNG

Bonne Cassini Cylindrical_Equal_Area Eckert4

Eckert6

Equidistant_Cylindrical Gnomonic Lambert_Conformal_Conic

Mercator

Miller_Cylindrical

Mollweide Neys NZMG

Oblique_Mercator

Orthographic Polar_Stereo Polyconic Sinusoidal Stereographic

Transverse_Cylindrical_Equa l_Area

Transverse_Mercator

Van_der_Grinten

	Zone
	Reference System

Info/ projection

Parameters/ zone
	integer
	[-60,-1] U [1,60]

	Standard Parallel
	Reference System

Info/ projection Parameters/ standard Parallel
	Decimal Latitude
	0 to 2 decimal numbers of

range: [-90.0,+90.0]

	Longitude Of Central

Meridian
	Reference System

Info/ projection Parameters/ longitude Of Central Meridian
	Decimal

Longitude
	range: [-180.0, +180.0)

	Latitude Of Projection

Origin
	Reference System

Info/ projection Parameters/ latitude Of Projection Origin
	Decimal Latitude
	range: [-90.0,+90.0]

	False Easting
	Reference System

Info/ projection Parameters/ false Easting
	Non Negative

Decimal
	[0.0, …), decimal is

guaranteed at least 18 digits

	False Northing
	Reference System

Info/ projection Parameters/ false Northing
	Non Negative

Decimal
	[0.0, …), decimal is

guaranteed at least 18 digits

	False Easting Northing

Units
	Reference System

Info/ projection Parameters/ false Easing Northing Units
	Unit Of Measure
	string

	Scale Factor at Equator
	Reference System

Info/ projection Parameters/ scale Factor At Equator
	Positive Decimal
	[0.0, …)

	Height of Perspective

Point Above Surface
	Reference System

Info/ projection Parameters/ height Of Prospective Point Above Surface
	Positive Decimal
	[0.0, …)

	Longitude of Projection

Center
	Reference System

Info/ projection Parameters/ longitude Of Projection Center
	Decimal

Longitude
	range: [-180.0, +180.0)

	Latitude of Projection

Center
	Reference System

Info/ projection Parameters/ latitude Of Projection Center
	Decimal Latitude
	range: [-90.0,+90.0]

	Scale Factor at Center

Line
	Reference System

Info/ projection Parameters/ scale Factor At Center Line
	Positive Decimal
	[0.0, 1.0]

	Straight Vertical Longitude

from Pole
	Reference System

Info/ projection Parameters/ straight Vertical Longitude From Pole
	Decimal

Longitude
	range: [-180.0, +180.0)

	Scale Factor at Projection

Origin
	Reference System

Info/ projection Parameters/ scale Factor At Projection Origin
	Positive Decimal
	[0.0, 1.0]

	Oblique Line Azimuth

Parameter
	Reference System

Info/ projection Parameters/ oblique Line Azimuth Parameter
	Oblique Line

Azimuth
	AzimuthAngle, azimuthMeasurePointLongitu

de

	Oblique Line Point

Parameter
	Reference System

Info/ projection

Parameters/ oblique Line Point Parameter
	Oblique Line

Point
	obliqueLineLatitude, obliqueLineLongitude

	Semi-Major Axis
	Reference System

Info/ Ellipsoid Parameters/ semi Major Axis
	Positive Decimal
	[0.0, …]

	Axis Units
	Reference System

Info/ Ellipsoid Parameters/ axis Units
	Unit Of Measure
	String

	
	Spatial Extent
	
	
	
	

	Horizontal Datum
	Reference System

Info/datum/ Identifier/ code
	Non Null String
	NAD83 – North American

1983

WGS72 – World Geodetic

System 1972

WGS84 – World Geodetic

System 1984

	Number of Dimensions
	Spatial

Representation Info/ number Of Dimensions
	Positive Integer
	[0,1,2,…]

	Resolution per Spatial

Dimension
	Spatial

Representation Info/ Dimension/ resolution/value
	Decimal
	(0.0, 1.0e18) Guaranteed 18

digits with optional ‗.‘, or leading signs, ‗+/-‗.

	Size per Dimension
	Spatial

Representation Info/ Dimension/ dimension Size
	nonnegative

integer
	[0,1,2,...,2^16-1]

	Corner Points
	Spatial

Representation Info/ corner Points/ Point/ coordinates
	Coordinates
	1 to 4 points of

pointPopertyType [-

360.0,+360.0] decimal degrees

	West Bounding Longitude
	Data Identification/

extent/ geographic Element/ west Bound Longitude
	Approximate

Longitude
	[-180.00, 180.00], maximum

2 fractional digits

	East Bounding Longitude
	Data Identification/

extent/ geographic Element/ east Bound Longitude
	Approximate

Longitude
	[-180.00, 180.00], maximum

2 fractional digits

	South Bounding Latitude
	Data Identification/ extent/ geographic Element/ south

Bound Latitude
	Approximate

Latitude
	[-90.00, 90.00], maximum 2 fractional digits

	North Bounding Latitude
	Data Identification/

extent/ geographic Element/ north Bound Latitude
	Approximate

Latitude
	[-90.00, 90.00] , maximum 2

fractional digits

	
	Bag Metadata Extension
	
	
	
	

	Tracking List ID
	Data Quality/

Lineage/ process

Step/ tracking Id
	Positive Integer
	Short (2byte) integer

	Vertical Uncertainty Type
	Data Identification/

vertical Uncertainty

Type
	Character String
	Unknown
= 0, Raw_Std_Dev
= 1,

CUBE_Std_Dev
= 2, Product_Uncert
= 3,

Historical_Std_Dev = 4

	depthCorrectionType
	Data Identification/

vertical Uncertainty

Type
	Character String
	SVP_Applied

1500_MS

1463_MS NA Carters

Unknown

Table A3 Elevation Dataset Attributes
	Entity Name
	Data Type
	Domain

	Elevation
	Float 32[][]
	(FLT_MIN, FLT_MAX)

	Minimum Elevation Value
	Float 32
	(FLT_MIN, FLT_MAX)

	Maximum Elevation Value
	Float 32
	(FLT_MIN, FLT_MAX)

Table A4 Uncertainty Dataset Attributes
	Entity Name
	Data Type
	Domain

	Uncertainty
	Float 32[][]
	(FLT_MIN, FLT_MAX)

	Minimum Uncertainty Value
	Float 32
	(FLT_MIN, FLT_MAX)

	Maximum Uncertainty Value
	Float 32
	(FLT_MIN, FLT_MAX)

Table A5 Tracking List Dataset Attributes
	Entity Name
	Data Type
	Domain

	Tracking List Item
	Bag Tracking

List Item
	N/A

	Tracking List Length
	Unsigned

Integer32
	[0, 232-1]

Table A6 Definition of Contents of the BAG Tracking List Item
	Entity Name
	Data Type
	Domain

	Row
	Unsigned Integer

32
	location of the node of the BAG that was

modified

	Col
	Unsigned Integer

32
	location of the node of the BAG that was

modified

	Depth
	Float 32
	original depth before this change

	Uncertainty
	Float 32
	original uncertainty before this change

	track_code
	Char
	reason code indicating why the modification was

made

	list_series
	Unsigned Integer

16
	index number indicating the item in the metadata that describes the modifications

Table A7 Optional Dataset Attributes
	Entity Name
	Data Type
	Domain

	Parameter type
	Unsigned Integer

32
	3 = Number of Hypothesis

4 = Average

5 = Standard Deviation

6 = Nominal Elevation

	data
	Float 32[][]
	(FLT_MIN, FLT_MAX)

A.2 Digital Signature Scheme
A.2.1 Digital Signature Scheme Implementation
The basic entity of the DSS is the Digital Signature (DS), a multi-byte sequence of digits computed from the contents of the BAG file excluding the certification information and another number, known as the secret key (SK), belonging to the person or entity signing the BAG, known as the Signature Authority (SA). The SK is known only to the SA, and as the name suggests should be kept confidential since knowledge of the SK would allow anyone to certify BAGs as if they were the SA. The DS value can be shown to be probabilistically unique for the contents of the BAG and the SK in the sense that, with vanishingly small probability, no two BAGs would generate the same DS with a particular SK, and no two SKs would generate the same DS with the same BAG.

Corresponding to the SK, there is a public key (PK) that can be distributed freely. There is no way to compute the DS using the PK. However, given a BAG and a DS purported to have been constructed with the SK, it is simple to verify whether the BAG has changed, or if another SK was used to construct the certification.

In addition to the basic DS required for the DSS, the BAG certification block contains a 32-bit integer used to link the certification event with an entry in the metadata‘s lineage section which describes the reasons for certification. The intent of this is to ensure that the user can provide suitably flexible descriptions of any conditions attached to the certification event, or the intended use of the data so certified. This ‗Signature ID‘ shall be a file-unique sequentially constructed integer so that a certification block can be unambiguously associated with exactly one lineage element.

A.2.2 Structure of the Digital Signature
The BAG DS information shall be maintained in a certification block of length 1024 bytes, appended to the end of the HDF5 data. The ID number shall be a ‗magic number‘ to identify the block, and the version byte shall be used to identify the structure of the remainder of the block between different versions of the algorithm. The SigID number corresponds to the Signature ID described above, and shall be followed immediately by the DS values which shall be stored sequentially as a length byte followed by the digits of the element. The CRC-32 checksum shall be used to ensure that any accidental or intentional corruption of the certification block will be detectable. The block shall be stored in little endian format, and zero padded to the full size of the block.

A.3 Application Program Interface
A.3.1 Application Program General
All HDF5 access and XML parsing are abstracted from the applications programmer in a BAG Application Programmers Interface.

A.3.2 Structure of the Source Tree
The source code for the BAG access library can be obtained from http://www.opennavsurf.org. The directory structure for the source tree is outlined below. The BAG Application Programming Interface (API) is defined in the api sub-directory, with the primary interface defined in bag.h. User-level code should not use any of the deeper interface functions (i.e. those not declared for public consumption in bag.h) since they do not present a uniform reporting structure for errors and return codes. Special instructions for compilation and the structure of the library are in a readme.txt file in the top level directory. Other readme.txt files provide detailed information throughout the remainder of the source tree.

Table A7 Source Tree Structure of the BAG API
	Api
	BAG API files.

	Configdata
	Configuration binary files, transformation and other geodetic data.

	
	ISO19139
	Meta-data schemas and definitions.

	Docs
	Documentation of the BAG file structure.

	
	Api
	doxygen documentation of API in HTML form.

	Examples
	Example source files showing how to exercise the API.

	
	bagcreate
	Create an example BAG given metadata in XML form.

	
	Bagread
	Read a BAG and write formatted ASCII output.

	
	Excertlib
	Sub-library to handle XML DSS certificates.

	
	Gencert
	Generate an XML certificate pair for the DSS.

	
	sampledata
	Small example BAG files for testing.

	
	Signcert
	Sign an XML public key certificate for the DSS.

	
	Signfile
	Sign a BAG file using the DSS.

	
	verifycert
	Verify the signature on a public key DSS certificate.

	
	Verifyfile
	Verify the signature of a BAG using the DSS.

	Extlibs
	External libraries used by the BAG API.

	
	beecrypt
	General cryptographic library used for the DSS.

	
	Hasp
	Hardware encryption token support library.

	
	HDF5
	Hierarchical Data Format support library, version 5.

	
	HDF5-linux
	Hierarchical Data Format support library, Linux build.

	
	Lib
	Storage for built external libraries.

	
	Libxml
	Simple XML parser library for excertlib support.

	
	mkspecs
	Configuration files for qmake cross-platform support.

	
	Szip
	Scientific code ZIP library (for HDF5).

	
	Xercesc
	Comprehensive XML parser library for BAG metadata.

	
	Zlib
	ZIP library (for HDF5).

	
	BAG_XML_LIB
	Interfacing with the XML Metadata for BAG fields

A.3.3 Basic Data Access
The BAG API supports a standard open/read-write/close process for dealing with BAG files, using bagFileOpen() and bagFileClose() to open/close existing files, and bagFileCreate() to create new files. When creating files, the user is responsible for filling out a bagData structure with the appropriate parameters and data (see bag.h for definitions) before calling bagFileCreate(); appropriate XML metadata is required to create a BAG file, bagInitDefinitionFromFile() can be used, or bagInitDefinitionFromBuffer() can be used if the XML has already been read into memory. A convenience function, bagInitDefinitionFromBag(), for use with pre-existing BAGs will also initialize the BAG definition from the BAG file‘s Metadata dataset.

The information required to access a BAG file is held in the bagHandle structure that is returned from bagFileOpen() or bagFileCreate(). This must be preserved throughout any process transaction with a BAG file. User level code cannot use bagHandle directly since it is opaqued in bag_private.h. However, access functions such as bagGetDataPointer() can be used to obtain any relevant information from the structure, such as a pointer to the data definition arrays, so that user-level code can access file-global definitions like the number of rows or columns in the data grids.

Once the file is open, data can be read either node by node using bagReadNode() or bagReadNodeLL() for projected and geographic grids, respectively (the type of grid can be found from the metadata), by row using bagReadRow(), within a sub-region using bagReadRegion() or as a full dataset using bagReadDataset(). The last three functions operate in node space, using row/column indices into the array rather than projected or geographic coordinates. Equivalently named calls (e.g., bagWriteNode(), bagWriteNodeLL()) are available to write data. Note that all data in the mandatory elements are single-precision floating point numbers, but the access calls use pointer-to-void formal parameters in order to opaque this restricted data type for future expansion.

The BAG structure is a uniform grid, defined by the geo-referencing point and a grid resolution in east and north directions. Therefore, no coordinates are required on a per-node basis since they may be computed implicitly from the row/column of the node in question. To assist in this, calls such as bagReadNodePos(), bagReadRowPos() or bagReadDatasetPos() augment the similarly named calls described previously by computing the positions of the rows and columns, which are returned in two linear arrays (one for vertical position of the rows, and one for the horizontal position of the columns) with respect to the grid‘s coordinate system. Note that this is the only recommended way of computing physical coordinates for nodes, and these positions cannot be computed subsequent to the read/write call.

A.3.4 Optional Datasets
The BAG structure allows for the storage of optional datasets that are co-registered with the elevation and uncertainty grids. The function bagCreateOptionalDataset() stores one of the optional datasets in the file. Functions bagWriteOptRegion(), bagWriteOptRow() and bagWriteOptNode().

bagGetOptDatasets() returns the number of and the names of optional datasets the a BAG. bagGetOptDatasetInfo()returns a handle to a particular optional dataset. As with the write functions bagReadOptRegion(), bagReadOptRow() and bagReadOptNode() return values in the optional dataset.

A.3.5 Surface Correctors
BAG 1.4 provides the functionality for vertical transformation of the stored surfaces. The premise is that the data are generally reduced to a chart datum. In order to modify the vertical datum of a dataset, offsets from the ellipsoid and mean sea level must be preserved. The BAG takes a more general approach storing up to 10 correctors per location. These correctors can be applied at data retrieval via api functions which use an inverse distance weighted function to interpolate a corrector for a node.

bagCreateCorrectorDataset() is used to store the correctors in the BAG.

bagWriteCorrectorVerticalDatum() writes the name of a particular datum attribute.

bagGetNumSurfaceCorrectors() returns the number of correctors for each node. bagReadCorrectorVerticalDatum() reads the name of a particular corrector. bagReadCorrectedDataset(), bagReadCorrectedRegion(), bagReadCorrectedRow() and bagReadCorrectedNode() return dataset values, respectively, with the corrector applied.

A.3.6 Metadata Access
XML metadata is treated as a simple binary stream of bytes. The XML stream can be read and written with bagReadXMLStream() and bagWriteXMLStream() respectively. When complete, the user code should call bagFreeXMLMeta() so that any dynamically allocated memory associated with the XML data parser is released.

Additionally there is an interface defined in the BAG_XML_LIB which consist of a set of data structures and functions for retrieving and creating the XML metadata. Data structures are defined for: IDENTIFICATION_INFO, MD_LEGAL_CONSTRAINTS, MD_SECURITY_CONSTRAINTS, DATA_QUALITY_INFO, SPATIAL_REPRESENTATION_INFO, REFERENCE_SYSTEM_INFO, and RESPONSIBLE_PARTY. The CreateXmlMetadataString() function builds a valid, well formed XML string. There is a GetAllStructures()function which populates data structures mentioned above and there are functions for retrieving each structure independently if desired.

A.3.7 Tracking List Access
The tracking list component of the BAG file is accessed via direct calls. The number of elements in the list can be read with bagTrackingListLength(), and individual nodes in the list may be obtained using bagReadTrackingListIndex() using linear indexing into the list. Multiple tracking list items can be read at a time according to a number of different criteria:

bagReadTrackingListNode() returns all of the items associated with a particular grid node, bagReadTrackingListCode() returns all items which are tagged with a particular reason code, and bagReadTrackingListSeries() returns all items which are tagged with the same metadata series number (i.e., which were all generated with one metadata lineage entry). Similarly named routines to write tracking list entries are also included. If required, the nodes of the tracking list can be sorted according to any of the criteria above using routines such as bagSortTrackingListByNode(), bagSortTrackingListBySeries(), etc.

A.3.8 Digital Signatures
Key pairs for a DS block are generated with bagGenerateKeyPair(), message digests are computed and signed with bagComputeMessageDigest() and bagSignMessageDigest() respectively, and file signatures can be computed directly using bagComputeFileSignature() if the message digest is not required separately.

Certification blocks are read, written and verified by bagReadCertification(), bagWriteCertification() and bagVerifyCertification() respectively. These routines are capable of silently creating a new certificate block at the end of the BAG if one is not present on write.

As convenience for the user who does not want to get into the details of the DSS, the bagSignFile() and bagVerifyFile() routines are provided to execute all of the stages required to complete signature and verification of a file, respectively. Similarly, the bagConvertCryptoFormat() routine can be used to convert signatures, digests or keys into ASCII format so that user-level code can write the data to suitable output files as required. It is the user‘s responsibility to ensure that secret keys are kept appropriately secret. An example of how to handle this is provided by the excertlib project in directory examples/excertlib/excertlib.c.
A.3.9 Error Codes and Reporting
All routines from bag.h return error codes from the bagError enumerated type, which is split into sections corresponding to the components of the library. Human-readable errors messages are available by passing the error code as an argument to bagGetErrorString().

S-111 HDF

Primary Metadata
There will be an initial (primary) group of metadata containing information that is common to both single-point time series and gridded data. A sample of these is described in the table below.

Table 10.1 – Primary metadata common to all current data types.
	N
	DESCRIPTION
	UNITS
	DATA TYPE
	VARIABLE NAME

	 1
	Country of Origin
	NA
	CodeList
	-

	2
	Primary Producing Agency Information
	NA
	CodeList
	-

	3
	Secondary Producing Information
	NA
	CodeList
	-

	4
	Name of Geographic Region
	NA
	CodeList
	-

	5
	Name of Geographic Subregion
	NA
	CodeList
	-

	6
	Minimum Longitude of Area
	Arc Degrees
	Real
	West_Bound_Long

	7
	Maximum Longitude of Area
	Arc Degrees
	Real
	East_BoundLong

	8
	Minimum Latitude of Area
	Arc Degrees
	Real
	South_Bound_Lat

	9
	Maximum Latitude of Area
	Arc Degrees
	Real
	North_Bound_Lat

	10
	Time of Data Production
	Y,M,D,H,M,S
	Date-Time
	T_product

	11
	Valid Time of First Value
	Y,M,D,H,M,S
	Date-Time
	T_valid1

	12
	Valid Time of Last Value
	Y,M,D,H,M,S
	Date-Time
	T_valid2

	13
	Data Type (1=time series, 2=gridded)
	None
	Enumeration
	Index_Data_Cov

	14
	Number of Blocks (Stations or Grid Sets) to follow
	None
	Integer
	N_Blocks

Depending on the type of data, another (secondary) group of metadata follows. These are explained below.

Secondary Metadata for Time Series

Below is the secondary metadata group, specific for time series data.

Table 10.2 – Secondary metadata for time series data.

	N
	DESCRIPTION
	UNITS
	DATA TYPE
	VARIABLE NAME

	1
	Station Name
	NA
	CodeList
	-

	2
	Data Type (1=historical, 2=real-time observation, 3=astronomical prediction)
	None
	Enumeration
	Index_Data_Type

	3
	Instrument Type, Prediction Scheme
	NA
	CodeList
	-

	4
	Station Location Longitude
	Arc Degrees
	Real
	Cur_Sta_Longitude

	5
	Station Location Latitude
	Arc Degrees
	Real
	Cur_Sta_Latitude

	6
	Index for Current Depth Ref (0=no,1=yes)
	None
	Enumeration
	Index_Depth_Ref

	7
	Depth of Current below Surface (Optional)
	Meters
	Real
	Surcur_Depth

	8
	Index for Surface Elevation (0=no,1=yes)
	None
	Enumeration
	Index_Surface_Elev

	9
	Sounding Datum for Water Elevation (0=none, 1=LAT, 2=MLLW, etc.) (Optional)
	None
	Enumeration
	Index_SoundDatum

	10
	Time Interval Between Values
	Hours
	Real
	T_interval

	11
	Number of Values in Time Series
	None
	Integer
	N_Values

	12
	Horizontal Position Uncertainty
	Meters
	Real
	Unc_horizpos

	13
	Vertical Position Uncertainty
	Meters
	Real
	Unc_vertpos

	14
	Spatial Uncertainty Index (0=unknown, 1=constant)
	None
	Enumeration
	Index_uncert

	15
	Speed Uncertainty Constant Value (Optional)
	Meters
	Real
	Unc_speed

	16
	Direction Uncertainty Constant Value (Optional)
	Arc Degrees
	Real
	Unc_direction

	17
	Missing Value (e.g., -99.999)
	(Varies)
	Real
	Missing_Value

Secondary Metadata for Gridded Data

	N
	DESCRIPTION
	UNITS
	DATA TYPE
	VARIABLE NAME

	1
	Name of Grid
	NA
	CodeList
	-

	2
	Model/Methodology
	NA
	CodeList
	-

	3
	Data Type:1=analysis, 2=hindcast,3=forecast
	None
	Enumeration
	Index_Data_Type

	4
	Grid Origin Longitude
	Arc Degrees
	Real
	Origin_Longitude

	5
	Grid Origin Latitude
	Arc Degrees
	Real
	Origin_Latitude

	6
	Grid Spacing Longitudinal
	Arc Degrees
	Real
	Delta_Longitude

	7
	Grid Spacing Latitudinal
	Arc Degrees
	Real
	Delta_Latitude

	8
	Number of Longitudinal Grid Points
	None
	Integer
	I_Max

	9
	Number of Latitudinal Grid Points
	None
	Integer
	J_Max

	10
	Index for Current Depth Ref (0=no,1=yes)
	None
	Enumeration
	Index_Depth_Ref

	11
	Depth of Current Below Surface (Optional)
	Meters
	Real
	Surcur_Depth

	12
	Index for Surface Elevation (0=no,1=yes)
	None
	Enumeration
	Index_Surface_Elev

	13
	Sounding Datum for Water Elevation (0=none, 1=LAT, 2=MLLW, etc.) (Optional)
	None
	Enumeration
	Index_SoundDatum

	14
	Depth of Layer (or 0=none)
	Meters
	Real
	Layer_Depth

	15
	Number of Data Sets in Time Series
	None
	Integer
	N_Sets

	16
	Time Interval Between Sets
	Hours
	Real
	T_Interval

	17
	Spatial Uncertainty Index (0=unk, 1=const, 2=array)
	None
	Enumeration
	Index_Spat_Uncert

	18
	Horizontal Position Uncertainty (if Index_Spat_Uncert=1)
	Meters
	Real
	Unc_Horizpos

	19
	Vertical Position Uncertainty
	Meters
	Real
	Unc_Vertpos

	20
	Data Uncertainty Index (0=unk,1=const, 2=array)
	None
	Enumeration
	Index_Data_Uncert

	21
	Speed Uncertainty Constant Value (Optional)
	Meters
	Real
	Unc_Speed

	22
	Direction Uncertainty Constant Value (Optional)
	Arc Degrees
	Real
	Unc_Direction

	23
	Land Mask Value (e.g., -99.999)
	(Varies)
	Real
	Land_Mask_Value

A list of required variables is shown in the table below. Most are self-explanatory. However, the following definitions and assumptions apply:
· Since speed and direction uncertainty fields are optional, there is a provision to provide spatially-constant values, or to specify uncertainty as unknown.

· If the current is described as a layer average, the depth value is assumed to be equal to the layer thickness.

· The land mask is coded by the null value.

· The coding for missing data is the same as the land mask.

Table 10.3 – Secondary metadata for gridded data.

The overall structure of the surface current data product may be created by assembling the data and metadata, each of which were described above. Sets of arrays for speed, direction, etc. for any one specific time are shown as grouped together in a block of data. The organization of the data product for time series differs slightly from that for the gridded data, so they are treated separately. Both product structures are compliant with the HDF5 and NetCDF data architectures, which allow multidimensional arrays of data to be grouped with metadata.

· 10.4
Overall Structure

1 10.4.1 Time Series Data

The series data, whether historical, real time, or astronomical prediction, can be organized in essentially identical way. The data at each point are represented by a series of values representing quantities at a sequence of times. Multiple stations are handled by adding additional data blocks. A schematic of the product is shown in Figure 10.3.

	
	
	

	
	Primary Metadata
	

	
	
	

	
	Secondary Metadata for Station No. 1
	

	
	Surface current speed
	

	
	Surface current direction
	

	
	Optional data
	

	
	
	

	
	Secondary Metadata for Station No. 2
	

	
	Surface current speed
	

	
	Surface current direction
	

	
	Optional data
	

	
	
	

Figure 10.3 - Schematic of the structure of the surface current data product for a time series.

2 10.4.2 Gridded Data

Gridded data may be treated in a similar fashion. The data at each point are represented by a series of values representing quantities at a sequence of points in the grid. Multiple time periods are handled by adding additional data blocks. A schematic of the product is shown in Figure 10.4.

	
	
	

	
	Primary Metadata
	

	
	Secondary Metadata for Grid
	

	
	
	

	
	Header for Grid No. 1
	

	
	Surface current speed
	

	
	Surface current direction
	

	
	Optional data
	

	
	
	

	
	Header for Grid No. 2
	

	
	Surface current speed
	

	
	Surface current direction
	

	
	Optional data
	

	
	
	

Figure 10.4 - Schematic of the structure of the surface current data product for

gridded data.

The header information for each grid can contain information such as the valid time. Details of the encoding of these datasets are found in Annex D.

· 10.5
Data Referencing System

The time series data in the surface current product consists of sets of arrays (Figure 6). There will be from two to five variables for each set of data for a station, one for each variable. The variables include, in order, the speed and direction, and optionally (if Index_Surf_Elev = 1) the water surface elevation, and (optionally, depending on the value of Index_Data_Uncert) the uncertainty in speed and uncertainty in direction.

As an example, consider the time series of speed values shown in Figure 10.1.

speed = 1.08, 1.00, 0.83, 0.73, 0.80, 0.77, 0.73, 0.61, 0.71, 0.71, 0.67

For shorthand, we represent this series as Ak(X, T), where A1 = speed, A2 = direction, etc. Any given array, Ak(X, T), will thus represent one of the five variables for all stations in the entire product, where k is the variable type, X is the location (i.e., the station) and T is the time. Each array will be dimensioned as A(N_Blocks, N_Values), were N_Blocks is the number of stations in the data product and N_Values the number in the time series. Null values are used to represent missing values.
The data in the first position of the second index in each array is valid at time T1 (T_valid1), and for the second position, for T2. Time for any value, TN, is determined by

TN = T_valid1 + (N – 1)*T_interval

where N is the position of the set: N = 1, 2, …, N_values Note: the calculation must account for the fact that T_valid1 consists of two parts: a date and time in day.

The gridded data in the surface current product are handled in a similar way. Each array however represents a two-dimensional grid of values, all at a single time. Any given array, Ak(X, Y, T), will thus represent one of the five variables for all stations in the entire product, where k is the variable type, X is the longitudinal location in the grid, Y is the latitudinal location in the grid, and T is the time. For a given array Ak, the array will be dimensioned as Ak(I_Max, J_Max, N_Blocks).

Null values will be used for points in the grid that represent land. A specified null value (for example, -99.999) will be interpreted as a point whose values are not to be used for either calculation or representation.

The first set will consist of the following coverage data for the first valid time, and the set for the second valid time (if any) will follow.

· 10.6
Digital Certification Block

Information here is used to certify the validity or integrity of the data.
Part 10c – HDF5 Data Format

