S-100 Edition 2.0.0
 January 2015

S-100 Part 10c
HDF5 Data Model and File Format
Copyright Notice and License Terms for

HDF5 (Hierarchical Data Format 5) Software Library and Utilities

HDF5 (Hierarchical Data Format 5) Software Library and Utilities

Copyright 2006-2015 by The HDF Group.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities

Copyright 1998-2006 by the Board of Trustees of the University of Illinois.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted for any purpose (including commercial purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the documentation and/or materials provided with the distribution.

3. In addition, redistributions of modified forms of the source or binary code must carry prominent notices stating that the original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software are asked, but not required, to acknowledge that it was developed by The HDF Group and by the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign and credit the contributors.

5. Neither the name of The HDF Group, the name of the University, nor the name of any Contributor may be used to endorse or promote products derived from this software without specific prior written permission from The HDF Group, the University, or the Contributor, respectively.

DISCLAIMER:

THIS SOFTWARE IS PROVIDED BY THE HDF GROUP AND THE CONTRIBUTORS

"AS IS" WITH NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. In no event shall The HDF Group or the Contributors be liable for any damages suffered by the users arising out of the use of this software, even if advised of the possibility of such damage.

Contents
3710c-1
Scope

3710c-2
Conformance

3710c-3
References

3710c-4
HDF5 Specification

3810c-4.1
Abstract Data Model

3910c-4.1.1
File

3910c-4.1.2
Group

4010c-4.1.3
Dataset

4110c-4.1.4
Dataspace

4110c-4.1.5
DataType

4210c-4.1.6
Attribute

4310c-4.1.7
Property List

4410c-4.2
HDF5 Library and Programming Model

10c-1 Scope
The Hierachical Data Format 5 (HDF5) HDF has been developed by the HDFgroup as a file format for the transfer of data that is used for imagery and gridded data. This Part specifies an interchange format to facilitate the moving of files containing data records between computer systems. It defines a specific structure which can be used to transmit files containing data type and data structures specific to S-100.

10c-2 Conformance

HDF5 uses an open source format. It allows users such as the IHO to collaborate with The HDF Group regarding functionality requirements and permits users' experience and knowledge to be incorporated into the HDF product when appropriate.

HDF5 is particularly good at dealing with data where complexity and scalability are important. Data of virtually any type or size can be stored in HDF5, including complex data structures and data types. HDF5 is portable, running on most operating systems and machines. HDF5 is scalable - it works well in high end computing environments, and can accommodate data objects of almost any size or multiplicity. It also can store large amounts of data efficiently - it has built-in compression. HDF5 is widely used in government, academia, and industry.
10c-3 References
The HDF Group, November 2011, HDF5 User’s Guide Release 1.8.8
The HDF Group, November 2011, HDF5 Reference Manual 1.8.8
10c-4 HDF5 Specification
HDF5 implements a model for managing and storing data. The model includes an abstract data model and an abstract storage model (the data format), and libraries to implement the abstract model and to map the storage model to different storage mechanisms. The HDF5 library provides a programming interface to a concrete implementation of the abstract models. The library also implements a model of data transfer, i.e., efficient movement of data from one stored representation to another stored representation. The figure below illustrates the relationships between the models and implementations.
[image: image1.jpg]manipulates
Aobjects rrom

Programming
Model

Stored Data

< (Fornat)
objects o

The Abstract Data Model is a conceptual model of data, data types, and data organization. The abstract data model is independent of storage medium or programming environment. The Storage Model is a standard representation for the objects of the abstract data model. The HDF5 File Format Specification defines the storage model.

The Programming Model is a model of the computing environment and includes platforms from small single systems to large multiprocessors and clusters. The programming model manipulates (instantiates, populates, and retrieves) objects from the abstract data model.

The Library is the concrete implementation of the programming model. The Library exports the HDF5 APIs as its interface. In addition to implementing the objects of the abstract data model, the Library manages data transfers from one stored form to another. Data transfer examples include reading from disk to memory and writing from memory to disk.

Stored Data is the concrete implementation of the storage model. The storage model is mapped to several storage mechanisms including single disk files, multiple files (family of files), and memory representations.

The HDF5 Library is a C module that implements the programming model and abstract data model. The HDF5 Library calls the operating system or other storage management software (e.g., the MPI/IO Library) to store and retrieve persistent data. The HDF5 Library may also link to other software such as filters for compression. The HDF5 Library is linked to an application program which may be written in C, C++, Fortran, or Java. The application program implements problem specific algorithms and data structures and calls the HDF5 Library to store and retrieve data.
The HDF5 Library implements the objects of the HDF5 abstract data model. Some of these objects include groups, datasets, and attributes. A S-100 product specification maps the S-100 data structures to a hierarchy of HDF5 objects. Each S-100m product specification will create a mapping best suited to its purposes.

The objects of the HDF5 abstract data model are mapped to the objects of the HDF5 storage model, and stored in a storage medium. The stored objects include header blocks, free lists, data blocks, B-trees, and other objects. Each group or dataset is stored as one or more header and data blocks.
10c-4.1 Abstract Data Model

The abstract data model (ADM) defines concepts for defining and describing complex data stored in files. The ADM is a very general model which is designed to conceptually cover many specific models. Many different kinds of data can be mapped to objects of the ADM, and therefore stored and retrieved using HDF5. The ADM is not, however, a model of any particular problem or application domain. Users need to map their data to the concepts of the ADM.

The key concepts include:

· File - a contiguous string of bytes in a computer store (memory, disk, etc.), and the bytes represent zero or more objects of the model

· Group - a collection of objects (including groups)

· Dataset - a multidimensional array of data elements with attributes and other metadata

· Dataspace - a description of the dimensions of a multidimensional array

· Datatype - a description of a specific class of data element including its storage layout as a pattern of bits

· Attribute - a named data value associated with a group, dataset, or named datatype

· Property List - a collection of parameters (some permanent and some transient) controlling options in the library

· Link - the way objects are connected

These key concepts are described in more detail below.

10c-4.1.1 File

Abstractly, an HDF5 file is a container for an organized collection of objects. The objects are groups, datasets, and other objects as defined below. The objects are organized as a rooted, directed graph. Every HDF5 file has at least one object, the root group. See the figure below. All objects are members of the root group or descendents of the root group.

HDF5 objects have a unique identity within a single HDF5 file and can be accessed only by its names within the hierarchy of the file. HDF5 objects in different files do not necessarily have unique identities, and it is not possible to access a permanent HDF5 object except through a file.
When the file is created, the file creation properties specify settings for the file. The file creation properties include version information and parameters of global data structures. When the file is opened, the file access properties specify settings for the current access to the file. File access properties include parameters for storage drivers and parameters for caching and garbage collection. The file creation properties are set permanently for the life of the file, and the file access properties can be changed by closing and reopening the file.

An HDF5 file can be “mounted” as part of another HDF5 file. This is analogous to Unix file system mounts. The root of the mounted file is attached to a group in the mounting file, and all the contents can be accessed as if the mounted file were part of the mounting file.

10c-4.1.2 Group

An HDF5 group is analogous to a file system directory. Abstractly, a group contains zero or more objects, and every object must be a member of at least one group. The root group is a special case; it may not be a member of any group.

Group membership is actually implemented via link objects. See the figure below. A link object is owned by a group and points to a named object. Each link has a name, and each link points to exactly one object. Each named object has at least one and possibly many links to it.
[image: image2.jpg]Attribute

Group membership via link objects
There are three classes of named objects: group, dataset, and named datatype. See the figure below. Each of these objects is the member of at least one group, and this means there is at least one link to it.
[image: image3.jpg]Named Object.

ob3_idiob3_id

Classes of named objects
10c-4.1.3 Dataset
An HDF5 dataset is a multidimensional array of data elements. See the figure below. The shape of the array (number of dimensions, size of each dimension) is described by the dataspace object.

A data element is a single unit of data which may be a number, a character, an array of numbers or characters, or a record of heterogeneous data elements. A data element is a set of bits. The layout of the bits is described by the datatype .
The dataspace and datatype are set when the dataset is created, and they cannot be changed for the life of the dataset. The dataset creation properties are set when the dataset is created. The dataset creation properties include the fill value and storage properties such as chunking and compression. These properties cannot be changed after the dataset is created.

The dataset object manages the storage and access to the data. While the data is conceptually a contiguous rectangular array, it is physically stored and transferred in different ways depending on the storage properties and the storage mechanism used. The actual storage may be a set of compressed chunks, and the access may be through different storage mechanisms and caches. The dataset maps between the conceptual array of elements and the actual stored data.
[image: image4.jpg]amerstring
offsatiote.
sizeihsize

A

storedin
Leyout:m5D_Llayout_t

chunk_ndims:int

chunk_dims:haize_t(]

£411_value_typerhid_t

£411 value:voids

describesonezlenent B ddescribeshrrayofEleanents

The dataset
10c-4.1.4 Dataspace
The HDF5 dataspace describes the layout of the elements of a multidimensional array. Conceptually, the array is a hyper-rectangle with one to 32 dimensions. HDF5 dataspaces can be extendable. Therefore, each dimension has a current size and a maximum size, and the maximum may be unlimited. The dataspace describes this hyper-rectangle: it is a list of dimensions with the current and maximum (or unlimited) sizes.
10c-4.1.5 DataType
The HDF5 datatype object describes the layout of a single data element. A data element is a single element of the array; it may be a single number, a character, an array of numbers or carriers, or other data. The datatype object describes the storage layout of this data.

Data types are categorized into 11 classes of datatype. Each class is interpreted according to a set of rules and has a specific set of properties to describe its storage. For instance, floating point numbers have exponent position and sizes which are interpreted according to appropriate standards for number representation. Thus, the datatype class tells what the element means, and the datatype describes how it is stored.

The figure below shows the classification of datatypes. Atomic datatypes are indivisible. Each may be a single object; a number, a string, or some other objects. Composite datatypes are composed of multiple elements of atomic datatypes. In addition to the standard types, users can define additional datatypes such as a 24-bit integer or a 16-bit float.

A dataset or attribute has a single datatype object associated with it. See the Dataset Figure above. The datatype object may be used in the definition of several objects, but by default, a copy of the datatype object will be private to the dataset.

Optionally, a datatype object can be stored in the HDF5 file. The datatype is linked into a group, and therefore given a name. A named datatype can be opened and used in any way that a datatype object can be used.

[image: image5.jpg]Datatype Class

D

Datatype classifications
10c-4.1.6 Attribute
Any HDF5 named data object (group, dataset, or named datatype) may have zero or more user defined attributes. Attributes are used to document the object. The attributes of an object are stored with the object.

An HDF5 attribute has a name and data. The data portion is similar in structure to a dataset: a dataspace defines the layout of an array of data elements, and a datatype defines the storage layout and interpretation of the elements. See the figure below.

[image: image6.jpg]0.1

s

Dataspace

describesonezienent b 4 describesarrayofslenents

Attribute data elements
In fact, an attribute is very similar to a dataset with the following limitations:

· An attribute can only be accessed via the object

· Attribute names are significant only within the object

· An attribute should be a small object

· The data of an attribute must be read or written in a single access (partial reading or writing is not allowed)

· Attributes do not have attributes

Note that the value of an attribute can be an object reference. A shared attribute or an attribute that is a large array can be implemented as a reference to a dataset.

The name, dataspace, and datatype of an attribute are specified when it is created and cannot be changed over the life of the attribute. An attribute can be opened by name, by index, or by iterating through all the attributes of the object.

10c-4.1.7 Property List
HDF5 has a generic property list object. Each list is a collection of name-value pairs. Each class of property list has a specific set of properties. Each property has an implicit name, a datatype, and a value. A property list object is created and used in ways similar to the other objects of the HDF5 library.

Property Lists are attached to the object in the library, they can be used by any part of the library. Some properties are permanent (e.g., the chunking strategy for a dataset), others are transient (e.g., buffer sizes for data transfer). A common use of a Property List is to pass parameters from the calling program to a VFL driver or a module of the pipeline.

Property lists are conceptually similar to attributes. Property lists are information relevant to the behavior of the library while attributes are relevant to the user’s data and application. Since the Poperty nList couples the data specification to a implementation use of HDF5 proerty lists in S-100 Product Specifications is discouraged.

10c-4.2 HDF5 Library and Programming Model

The HDF5 Library implements the HDF5 abstract data model and storage model. Two major objectives of the HDF5 products are to provide tools that can be used on as many computational platforms as possible (portability), and to provide a reasonably object-oriented data model and programming interface.

 To be as portable as possible, the HDF5 Library is implemented in portable C. C is not an object-oriented language, but the library uses several mechanisms and conventions to implement an object model.

One mechanism the HDF5 library uses is to implement the objects as data structures. To refer to an object, the HDF5 library implements its own pointers. These pointers are called identifiers. An identifier is then used to invoke operations on a specific instance of an object. For example, when a group is opened, the API returns a group identifier. This identifier is a reference to that specific group and will be used to invoke future operations on that group. The identifier is valid only within the context it is created and remains valid until it is closed or the file is closed. This mechanism is essentially the same as the mechanism that C++ or other object-oriented languages use to refer to objects except that the syntax is C.

Similarly, object-oriented languages collect all the methods for an object in a single name space. An example is the methods of a C++ class. The C language does not have any such mechanism, but the HDF5 Library simulates this through its API naming convention. API function names begin with a common prefix that is related to the class of objects that the function operates on. The table below lists the HDF5 objects and the standard prefixes used by the corresponding HDF5 APIs. For example, functions that operate on datatype objects all have names beginning with H5T.

	Prefix
	Operates on

	H5A
	Attributes

	H5D
	Datasets

	H5E
	Error reports

	H5F
	Files

	H5G
	Groups

	H5I
	Identifiers

	H5L
	Links

	H5O
	Objects

	H5P
	Property lists

	H5R
	References

	H5S
	Dataspaces

	H5T
	Datatypes

	H5Z
	Filters

The HDF5 API naming scheme

Refer the HDF5 User’s Guide Release 1.8.8 and the HDF5 Reference Manual 1.8.8 more details on the HDF5 model implementation. S-100 Product Specifications must specify the HDF5 groups, datasaetsets and attributes in context of the S-100 General Feature Model. Appendix A provides an example.
A.1 Encoding Architecture
The current Bathymetric Surface product, S-102, utilizes the Hierarchical Data Format version 5 or HDF5 as its encoding. HDF5 is an architecture-independent software library and file format that allows for the storage and retrieval of large, complex datasets. HDF5 files are organized in a hierarchical structure, with two primary structures; groups and datasets.

An HDF5 ― Group provides the top-level structure for the data contents of the Bathymetric Surface product. The major subcomponents are defined using the HDF5 ―Dataset types, and ―Attribute types. Within each ―Dataset, further structural decomposition is specified via the DATATYPE and DATASPACE parameters. Attributes are included were appropriate to provide Dataset specific metadata. Following the high level file structure described in Figure 1, the specific HDF5 type definitions that define the S-102 encapsulation structure are illustrated in Figure A1.

Group ―BAG_root‖ {Attribute S-102 Version‖
Dataset ―metadata‖ {
DATATYPE
String
DATASPACE
1-dimension, 0-N

DATASET {―XML…‖} }
Dataset ―elevation‖ {
DATATYPE
Floating point 4bytes DATASPACE
2-dimensions, 0-N, 0-M DATASET {{}}

Attribute ―Minimum Elevation Value‖ Attribute ―Maximum Elevation Value‖
} }
Dataset ―uncertainty‖ {
DATATYPE
Floating point 4bytes DATASPACE
2-dimensions, 0-N, 0-M DATASET {{}}

Attribute ―Minimum Uncertainty Value‖ Attribute ―Maximum Uncertainty Value‖}
Dataset ―<optional>‖{
DATATYPE
Floating point 4bytes DATASPACE
2-dimensions, 0-N, 0-M DATASET {{}}}

Dataset ―tracking list‖ {
DATATYPE
bagTrackingListItem

DATASPACE
1-dimension, 0-N DATASET {}

Attribute ―Tracking List Length‖}
}
Dataset ―vertical datum corrrector‖ { DATATYPE
surfacecorrector DATASPACE
1-dimension, 0-N DATASET {}
}

Fig A1 - Structure of S-102 Data Encoding using HDF5
Table A1 provides a description the Bathymetric Surface product HDF5 encoding root group.

Table A1 - BAG Root Group
	Entity Name
	Data Type
	Domain

	S-102 Version
	String
	Maximum 32 bytes available

	Metadata
	Dataset
	Detailed in table A2

	Elevation
	Dataset
	Detailed in table A3

	Uncertainty
	Dataset
	Detailed in table A4

	tracking list
	Dataset
	Detailed in table A5, and in table A6

Table A2 defines the metadata items used within the S-102 I/O library. These items must be present and properly defined for I/O operations to succeed. Note that this listing of metadata items does not specify the mandatory metadata items required by the ISO 19115 standard. The XML Tag Nesting Column specifies the XML element within the ISO 19139 implementation of ISO 19115 where the values are to be defined. The full schema is distributed in the source tree.

Table A2 - Group Level Metadata – Grid Parameters
	Entity Name
	XML Tag Nesting
	Data Type
	Domain

	
	CoordSys
	
	
	
	

	Coordinate System code
	Reference System

Info/ projection/ Identifier/ code
	Non Null String
	Geodetic

GEOREF Geocentric Local_Cartesian MGRS

UTM UPS Albers_Equal_Area_Conic Azimuthal_Equidistant BNG

Bonne Cassini Cylindrical_Equal_Area Eckert4

Eckert6

Equidistant_Cylindrical Gnomonic Lambert_Conformal_Conic

Mercator

Miller_Cylindrical

Mollweide Neys NZMG

Oblique_Mercator

Orthographic Polar_Stereo Polyconic Sinusoidal Stereographic

Transverse_Cylindrical_Equa l_Area

Transverse_Mercator

Van_der_Grinten

	Zone
	Reference System

Info/ projection

Parameters/ zone
	integer
	[-60,-1] U [1,60]

	Standard Parallel
	Reference System

Info/ projection Parameters/ standard Parallel
	Decimal Latitude
	0 to 2 decimal numbers of

range: [-90.0,+90.0]

	Longitude Of Central

Meridian
	Reference System

Info/ projection Parameters/ longitude Of Central Meridian
	Decimal

Longitude
	range: [-180.0, +180.0)

	Latitude Of Projection

Origin
	Reference System

Info/ projection Parameters/ latitude Of Projection Origin
	Decimal Latitude
	range: [-90.0,+90.0]

	False Easting
	Reference System

Info/ projection Parameters/ false Easting
	Non Negative

Decimal
	[0.0, …), decimal is

guaranteed at least 18 digits

	False Northing
	Reference System

Info/ projection Parameters/ false Northing
	Non Negative

Decimal
	[0.0, …), decimal is

guaranteed at least 18 digits

	False Easting Northing

Units
	Reference System

Info/ projection Parameters/ false Easing Northing Units
	Unit Of Measure
	string

	Scale Factor at Equator
	Reference System

Info/ projection Parameters/ scale Factor At Equator
	Positive Decimal
	[0.0, …)

	Height of Perspective

Point Above Surface
	Reference System

Info/ projection Parameters/ height Of Prospective Point Above Surface
	Positive Decimal
	[0.0, …)

	Longitude of Projection

Center
	Reference System

Info/ projection Parameters/ longitude Of Projection Center
	Decimal

Longitude
	range: [-180.0, +180.0)

	Latitude of Projection

Center
	Reference System

Info/ projection Parameters/ latitude Of Projection Center
	Decimal Latitude
	range: [-90.0,+90.0]

	Scale Factor at Center

Line
	Reference System

Info/ projection Parameters/ scale Factor At Center Line
	Positive Decimal
	[0.0, 1.0]

	Straight Vertical Longitude

from Pole
	Reference System

Info/ projection Parameters/ straight Vertical Longitude From Pole
	Decimal

Longitude
	range: [-180.0, +180.0)

	Scale Factor at Projection

Origin
	Reference System

Info/ projection Parameters/ scale Factor At Projection Origin
	Positive Decimal
	[0.0, 1.0]

	Oblique Line Azimuth

Parameter
	Reference System

Info/ projection Parameters/ oblique Line Azimuth Parameter
	Oblique Line

Azimuth
	AzimuthAngle, azimuthMeasurePointLongitu

de

	Oblique Line Point

Parameter
	Reference System

Info/ projection

Parameters/ oblique Line Point Parameter
	Oblique Line

Point
	obliqueLineLatitude, obliqueLineLongitude

	Semi-Major Axis
	Reference System

Info/ Ellipsoid Parameters/ semi Major Axis
	Positive Decimal
	[0.0, …]

	Axis Units
	Reference System

Info/ Ellipsoid Parameters/ axis Units
	Unit Of Measure
	String

	
	Spatial Extent
	
	
	
	

	Horizontal Datum
	Reference System

Info/datum/ Identifier/ code
	Non Null String
	NAD83 – North American

1983

WGS72 – World Geodetic

System 1972

WGS84 – World Geodetic

System 1984

	Number of Dimensions
	Spatial

Representation Info/ number Of Dimensions
	Positive Integer
	[0,1,2,…]

	Resolution per Spatial

Dimension
	Spatial

Representation Info/ Dimension/ resolution/value
	Decimal
	(0.0, 1.0e18) Guaranteed 18

digits with optional ‗.‘, or leading signs, ‗+/-‗.

	Size per Dimension
	Spatial

Representation Info/ Dimension/ dimension Size
	nonnegative

integer
	[0,1,2,...,2^16-1]

	Corner Points
	Spatial

Representation Info/ corner Points/ Point/ coordinates
	Coordinates
	1 to 4 points of

pointPopertyType [-

360.0,+360.0] decimal degrees

	West Bounding Longitude
	Data Identification/

extent/ geographic Element/ west Bound Longitude
	Approximate

Longitude
	[-180.00, 180.00], maximum

2 fractional digits

	East Bounding Longitude
	Data Identification/

extent/ geographic Element/ east Bound Longitude
	Approximate

Longitude
	[-180.00, 180.00], maximum

2 fractional digits

	South Bounding Latitude
	Data Identification/ extent/ geographic Element/ south

Bound Latitude
	Approximate

Latitude
	[-90.00, 90.00], maximum 2 fractional digits

	North Bounding Latitude
	Data Identification/

extent/ geographic Element/ north Bound Latitude
	Approximate

Latitude
	[-90.00, 90.00] , maximum 2

fractional digits

	
	Bag Metadata Extension
	
	
	
	

	Tracking List ID
	Data Quality/

Lineage/ process

Step/ tracking Id
	Positive Integer
	Short (2byte) integer

	Vertical Uncertainty Type
	Data Identification/

vertical Uncertainty

Type
	Character String
	Unknown
= 0, Raw_Std_Dev
= 1,

CUBE_Std_Dev
= 2, Product_Uncert
= 3,

Historical_Std_Dev = 4

	depthCorrectionType
	Data Identification/

vertical Uncertainty

Type
	Character String
	SVP_Applied

1500_MS

1463_MS NA Carters

Unknown

Table A3 Elevation Dataset Attributes
	Entity Name
	Data Type
	Domain

	Elevation
	Float 32[][]
	(FLT_MIN, FLT_MAX)

	Minimum Elevation Value
	Float 32
	(FLT_MIN, FLT_MAX)

	Maximum Elevation Value
	Float 32
	(FLT_MIN, FLT_MAX)

Table A4 Uncertainty Dataset Attributes
	Entity Name
	Data Type
	Domain

	Uncertainty
	Float 32[][]
	(FLT_MIN, FLT_MAX)

	Minimum Uncertainty Value
	Float 32
	(FLT_MIN, FLT_MAX)

	Maximum Uncertainty Value
	Float 32
	(FLT_MIN, FLT_MAX)

Table A5 Tracking List Dataset Attributes
	Entity Name
	Data Type
	Domain

	Tracking List Item
	Bag Tracking

List Item
	N/A

	Tracking List Length
	Unsigned

Integer32
	[0, 232-1]

Table A6 Definition of Contents of the BAG Tracking List Item
	Entity Name
	Data Type
	Domain

	Row
	Unsigned Integer

32
	location of the node of the BAG that was

modified

	Col
	Unsigned Integer

32
	location of the node of the BAG that was

modified

	Depth
	Float 32
	original depth before this change

	Uncertainty
	Float 32
	original uncertainty before this change

	track_code
	Char
	reason code indicating why the modification was

made

	list_series
	Unsigned Integer

16
	index number indicating the item in the metadata that describes the modifications

Table A7 Optional Dataset Attributes
	Entity Name
	Data Type
	Domain

	Parameter type
	Unsigned Integer

32
	3 = Number of Hypothesis

4 = Average

5 = Standard Deviation

6 = Nominal Elevation

	data
	Float 32[][]
	(FLT_MIN, FLT_MAX)

A.2 Application Program Interface
A.2.1 Application Program General
All HDF5 access and XML parsing are abstracted from the applications programmer in a S-102 Application Programmers Interface. Note, this specification is based heavily on version 1.5 of the Open Navigations Surface version of the Bathymetric Attributed Grid (BAG) API.
A.2.2 Structure of the Source Tree
The source code for the S-102 access library can be obtained from http://www.opennavsurf.org. The directory structure for the source tree is outlined below. The BAG Application Programming Interface (API) is defined in the api sub-directory, with the primary interface defined in bag.h. User-level code should not use any of the deeper interface functions (i.e. those not declared for public consumption in bag.h) since they do not present a uniform reporting structure for errors and return codes. Special instructions for compilation and the structure of the library are in a readme.txt file in the top level directory. Other readme.txt files provide detailed information throughout the remainder of the source tree.

Table A7 Source Tree Structure of the BAG API
	Api
	S-102 API files.

	Configdata
	Configuration binary files, transformation and other geodetic data.

	
	ISO19139
	Meta-data schemas and definitions.

	Docs
	Documentation of the BAG file structure.

	
	Api
	doxygen documentation of API in HTML form.

	Examples
	Example source files showing how to exercise the API.

	
	bagcreate
	Create an example BAG given metadata in XML form.

	
	Bagread
	Read a BAG and write formatted ASCII output.

	
	Excertlib
	Sub-library to handle XML DSS certificates.

	
	Gencert
	Generate an XML certificate pair for the DSS.

	
	sampledata
	Small example BAG files for testing.

	
	Signcert
	Sign an XML public key certificate for the DSS.

	
	Signfile
	Sign a BAG file using the DSS.

	
	verifycert
	Verify the signature on a public key DSS certificate.

	
	Verifyfile
	Verify the signature of a BAG using the DSS.

	Extlibs
	External libraries used by the BAG API.

	
	beecrypt
	General cryptographic library used for the DSS.

	
	Hasp
	Hardware encryption token support library.

	
	HDF5
	Hierarchical Data Format support library, version 5.

	
	HDF5-linux
	Hierarchical Data Format support library, Linux build.

	
	Lib
	Storage for built external libraries.

	
	Libxml
	Simple XML parser library for excertlib support.

	
	mkspecs
	Configuration files for qmake cross-platform support.

	
	Szip
	Scientific code ZIP library (for HDF5).

	
	Xercesc
	Comprehensive XML parser library for BAG metadata.

	
	Zlib
	ZIP library (for HDF5).

	
	BAG_XML_LIB
	Interfacing with the XML Metadata for BAG fields

A.3.3 Basic Data Access
The BAG API supports a standard open/read-write/close process for dealing with BAG files, using bagFileOpen() and bagFileClose() to open/close existing files, and bagFileCreate() to create new files. When creating files, the user is responsible for filling out a bagData structure with the appropriate parameters and data (see bag.h for definitions) before calling bagFileCreate(); appropriate XML metadata is required to create a BAG file, bagInitDefinitionFromFile() can be used, or bagInitDefinitionFromBuffer() can be used if the XML has already been read into memory. A convenience function, bagInitDefinitionFromBag(), for use with pre-existing BAGs will also initialize the BAG definition from the BAG file‘s Metadata dataset.

The information required to access a BAG file is held in the bagHandle structure that is returned from bagFileOpen() or bagFileCreate(). This must be preserved throughout any process transaction with a BAG file. User level code cannot use bagHandle directly since it is opaqued in bag_private.h. However, access functions such as bagGetDataPointer() can be used to obtain any relevant information from the structure, such as a pointer to the data definition arrays, so that user-level code can access file-global definitions like the number of rows or columns in the data grids.

Once the file is open, data can be read either node by node using bagReadNode() or bagReadNodeLL() for projected and geographic grids, respectively (the type of grid can be found from the metadata), by row using bagReadRow(), within a sub-region using bagReadRegion() or as a full dataset using bagReadDataset(). The last three functions operate in node space, using row/column indices into the array rather than projected or geographic coordinates. Equivalently named calls (e.g., bagWriteNode(), bagWriteNodeLL()) are available to write data. Note that all data in the mandatory elements are single-precision floating point numbers, but the access calls use pointer-to-void formal parameters in order to opaque this restricted data type for future expansion.

The BAG structure is a uniform grid, defined by the geo-referencing point and a grid resolution in east and north directions. Therefore, no coordinates are required on a per-node basis since they may be computed implicitly from the row/column of the node in question. To assist in this, calls such as bagReadNodePos(), bagReadRowPos() or bagReadDatasetPos() augment the similarly named calls described previously by computing the positions of the rows and columns, which are returned in two linear arrays (one for vertical position of the rows, and one for the horizontal position of the columns) with respect to the grid‘s coordinate system. Note that this is the only recommended way of computing physical coordinates for nodes, and these positions cannot be computed subsequent to the read/write call.

A.3.4 Optional Datasets
The BAG structure allows for the storage of optional datasets that are co-registered with the elevation and uncertainty grids. The function bagCreateOptionalDataset() stores one of the optional datasets in the file. Functions bagWriteOptRegion(), bagWriteOptRow() and bagWriteOptNode().

bagGetOptDatasets() returns the number of and the names of optional datasets the a BAG. bagGetOptDatasetInfo()returns a handle to a particular optional dataset. As with the write functions bagReadOptRegion(), bagReadOptRow() and bagReadOptNode() return values in the optional dataset.

A.3.5 Surface Correctors
BAG 1.4 provides the functionality for vertical transformation of the stored surfaces. The premise is that the data are generally reduced to a chart datum. In order to modify the vertical datum of a dataset, offsets from the ellipsoid and mean sea level must be preserved. The BAG takes a more general approach storing up to 10 correctors per location. These correctors can be applied at data retrieval via api functions which use an inverse distance weighted function to interpolate a corrector for a node.

bagCreateCorrectorDataset() is used to store the correctors in the BAG.

bagWriteCorrectorVerticalDatum() writes the name of a particular datum attribute.

bagGetNumSurfaceCorrectors() returns the number of correctors for each node. bagReadCorrectorVerticalDatum() reads the name of a particular corrector. bagReadCorrectedDataset(), bagReadCorrectedRegion(), bagReadCorrectedRow() and bagReadCorrectedNode() return dataset values, respectively, with the corrector applied.

A.3.6 Metadata Access
XML metadata is treated as a simple binary stream of bytes. The XML stream can be read and written with bagReadXMLStream() and bagWriteXMLStream() respectively. When complete, the user code should call bagFreeXMLMeta() so that any dynamically allocated memory associated with the XML data parser is released.

Additionally there is an interface defined in the BAG_XML_LIB which consist of a set of data structures and functions for retrieving and creating the XML metadata. Data structures are defined for: IDENTIFICATION_INFO, MD_LEGAL_CONSTRAINTS, MD_SECURITY_CONSTRAINTS, DATA_QUALITY_INFO, SPATIAL_REPRESENTATION_INFO, REFERENCE_SYSTEM_INFO, and RESPONSIBLE_PARTY. The CreateXmlMetadataString() function builds a valid, well formed XML string. There is a GetAllStructures()function which populates data structures mentioned above and there are functions for retrieving each structure independently if desired.

A.3.7 Tracking List Access
The tracking list component of the BAG file is accessed via direct calls. The number of elements in the list can be read with bagTrackingListLength(), and individual nodes in the list may be obtained using bagReadTrackingListIndex() using linear indexing into the list. Multiple tracking list items can be read at a time according to a number of different criteria:

bagReadTrackingListNode() returns all of the items associated with a particular grid node, bagReadTrackingListCode() returns all items which are tagged with a particular reason code, and bagReadTrackingListSeries() returns all items which are tagged with the same metadata series number (i.e., which were all generated with one metadata lineage entry). Similarly named routines to write tracking list entries are also included. If required, the nodes of the tracking list can be sorted according to any of the criteria above using routines such as bagSortTrackingListByNode(), bagSortTrackingListBySeries(), etc.

A.3.8 Digital Signatures
Key pairs for a DS block are generated with bagGenerateKeyPair(), message digests are computed and signed with bagComputeMessageDigest() and bagSignMessageDigest() respectively, and file signatures can be computed directly using bagComputeFileSignature() if the message digest is not required separately.

Certification blocks are read, written and verified by bagReadCertification(), bagWriteCertification() and bagVerifyCertification() respectively. These routines are capable of silently creating a new certificate block at the end of the BAG if one is not present on write.

As convenience for the user who does not want to get into the details of the DSS, the bagSignFile() and bagVerifyFile() routines are provided to execute all of the stages required to complete signature and verification of a file, respectively. Similarly, the bagConvertCryptoFormat() routine can be used to convert signatures, digests or keys into ASCII format so that user-level code can write the data to suitable output files as required. It is the user‘s responsibility to ensure that secret keys are kept appropriately secret. An example of how to handle this is provided by the excertlib project in directory examples/excertlib/excertlib.c.
A.3.9 Error Codes and Reporting
All routines from bag.h return error codes from the bagError enumerated type, which is split into sections corresponding to the components of the library. Human-readable errors messages are available by passing the error code as an argument to bagGetErrorString().

Part 10c – HDF5 Data Format

