S-100 Edition 4.0.0

 December 2018
S-100 Edition 4.0.0

 December 2018

S-100 – Part 9a
Portrayal (Lua)
Page intentionally left blank

Contents

9a-1
Scope
1
9a-2
Conformance
1
9a-3
Normative references
1
9a-4
Portrayal Catalogue
2
9a-5
General Portrayal Model
2
9a-5.1
The Portrayal Process
2
9a-5.2
Lua Portrayal Process
3
9a-5.2.1
Portrayal Initialization
4
9a-5.2.2
Generating a Portrayal
4
9a-6
Package Overview
5
9a-7
Data input schema
5
9a-8
Information objects
5
9a-9
Feature objects
5
9a-10
Portrayal processing
5
9a-11
Drawing Instructions
6
9a-11.1
The concepts of drawing instructions
6
9a-11.1.1 General concept
6
9a-11.2
Model of the Drawing Instructions
6
9a-11.2.1 Drawing Commands
6
9a-11.2.2 State Commands
9
9a-12
Symbol Definitions
22
9a-13
The Portrayal Library
22
9a-14
Portrayal Domain Specific Functions
23
9a-14.1
Portrayal Domain Specific Catalogue Functions
23
9a-14.1.1 Boolean PortrayalMain(String[] featureIDs)
23
9a-14.1.2 void PortrayalInitializeContextParameters(ContextParameter[] contextParameters)
23
9a-14.1.3 ContextParameter PortrayalCreateContextParameter(String contextParameterName, String contextParameterType, String defaultValue)
23
9a-14.1.4 void PortrayalSetContextParameter(String contextParameterName, String value)
24
9a-14.2
Portrayal Domain Specific Host Functions
24
9a-14.2.1 Boolean HostPortrayalEmit(String featureID, String drawingInstructions, String observedParameters)
24

Page intentionally left blank

9a-1 Scope

This part defines the changes to S-100 Part 9 necessary to implement portrayal using the scripting mechanism defined in S-100 Part 13. Products which specify use of a portrayal catalogue as described in this part must also require implementation of S-100 Part 13.

9a-2 Conformance

This part of the specification conforms to S-100 Part 13.
9a-3 Normative references

The following referenced documents are required for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including amendments) applies.

Lua 5.1 Reference Manual, https://www.lua.org/manual/5.1/
9a-4
Portrayal Catalogue

There are no changes to the Part 9 portrayal catalogue overview.
9a-5
General Portrayal Model

[image: image3.png]Context
Parameters

System Host
Database

Lua Processor

Lua Scripts Data Exchange
(Scripting Catalogue) Format (DEF)

There are no changes to the Part 9 general portrayal model. A Lua portrayal follows the general portrayal model described in 9-5. Figure 9a-1 illustrates the general portrayal model.
9a-5.1
The Portrayal Process

As illustrated in Figure 9a-2, a Lua portrayal requires the following changes to the portrayal process described in Part 9, clause 9-5.1 and captured in Table 9a-1:

Table 9a-1 - Changes to the portrayal process

	Part 9
	Part 9a

	Portrayal functions are written in the XSLT programming language.
	Portrayal functions are written in the Lua programming language.

	Host provides an XSLT implementation.
	Host provides a Lua interpreter or Lua virtual machine.

	Feature data is exposed to the portrayal functions via an XML document which must describe all features to be portrayed, along with all attribution, spatial relations, information associations, and all other information which may be used by the portrayal functions.
	Feature data is not initially exposed to the portrayal functions. Instead, the host provides a list of the feature IDs to be portrayed; the portrayal functions will request attribution, spatial relations, information associations, and all other information as needed via host call-back functions.

	Drawing instructions are returned to the host as an XML document, which is the result of an XSL transformation applied to the input feature data.
	Drawing instructions are returned to the host via host call-back function HostPortrayalEmit.

9a-5.2
Lua Portrayal Process

This section describes the Part 9a portrayal process in detail, and indicates where there are changes to Part 9. The Lua portrayal process is shown in Figure 9a-3.
[image: image1.png]©
>S5
-

Portrayal

L

lllll

HHHHT
i
mmm)

9a-5.2.1
Portrayal Initialization

Prior to calling Lua portrayal functions, the host must register the domain specific scripting catalogue functions by loading a portrayal catalogue TopLevelTemplate rule file (a Lua script file). In order to prevent name collisions on PortrayalMain, the host must instantiate and initialize a new Lua runtime environment each time the TopLevelTemplate is changed. Alternatively, the host can maintain multiple Lua runtimes, one for each TopLevelTemplate.
After registering the scripting catalogue functions, the host calls
PortrayalInitializeContextParameters, passing in the name and default value for each portrayal context parameter defined by the portrayal catalogue. The portrayal context parameter values are associated with the given dataset and stay in effect until the scripting session is closed, or the values are changed via PortrayalSetContextParameter.

9a-5.2.2

Generating a Portrayal
Portrayal script function PortrayalMain (see clause 9a-14.1.1) is used to generate drawing instructions for a set of feature instances. The host passes in a set of feature IDs to PortrayalMain; the portrayal scripts will iterate over the feature IDs and generate drawing instructions for each.
As each feature instance is processed, the portrayal engine will call standard host functions to request attribute, spatial, or other information as needed. Upon completion of processing for a feature instance the portrayal engine will call HostPortrayalEmit (see clause 9a-14.2.1) and provide the drawing instructions for that feature instance to the host application.

The portrayal for a given S100_Dataset is complete when the call to PortrayalMain returns. If the portrayal completed successfully, PortrayalMain returns true, otherwise PortrayalMain returns false along with a message indicating why the portrayal did not run to completion.

A host can terminate a portrayal prior to processing all feature instances by returning false from HostPortrayalEmit.

Calling PortrayalMain with all feature IDs from a given dataset will generate drawing instructions for the entire dataset. Drawing instructions for a subset of a dataset can be (re)generated by passing in feature IDs corresponding to the subset. This is useful when the host needs to regenerate a set of cached drawing instructions, or if the host is portraying a subset of a dataset such as a single S100_DataCoverage.
9a-5.2.2.1
Implementing a Portrayal Cache
In order to speed up the rendering process the host can optionally implement a portrayal cache. A portrayal cache is used to cache the drawing instructions which are output from the portrayal. Caching the drawing instructions for each feature instance allows the host to re-render feature instances without re-generating their portrayal. A cached drawing instruction only needs to be re-generated when one or more context parameters which were used to generate the drawing instruction changes.

When the portrayal scripts return the drawing instructions for a feature instance they also return a list of “observed” portrayal context parameters (see clause 9a-14.2.1). The observed context parameters are those context parameters which were evaluated during the generation of drawing instructions for a particular feature. For more detail on context parameters refer to Part 9 clause 9-13.3.22.
A notional portrayal cache is shown in Figure 9a-4. To implement, the host should cache the value of observed context parameters along with the generated drawing instructions and associate both with the feature instance. Note that a feature instance may have any number of observed context parameters, including zero.
Any changes to a context parameter requires that the host regenerate the drawing instructions for all feature instances with a matching observed context parameter. Alternatively, the host may use cached drawing instructions which were previously generated for the new value of the changed context parameter(s). Features which have no observed parameters can persist in the cache until a new portrayal catalogue is issued.

[image: image2.png]| Feature ID

Portrayal Cache

—| Feature ID

Figure 9a-4 - Notional Portrayal Cache
9a-5.2.2.2
Pre-processing a Portrayal

Implementing a portrayal cache allows the host to pre-generate the drawing instructions for a given set or sets of context parameters. This would typically be implemented as part of the hosts data import functionality.
9a-6
Package Overview

There is no change to the Part 9 package overview, although most packages are unused by Part 9a due to the removal of the portrayal input schema.

9a-7
Data input schema

This part does not use a data input schema as defined in Part 9 clause 9-7. Data is passed between a 9a portrayal and a host as described in Part 13.

9a-8
Information objects

Information objects as described in Part 9 are unused in Part 9a. Instead, information associated with features to be portrayed is obtained as described in Part 13.

9a-9
Feature objects

Feature objects as described in Part 9 are unused in Part 9a. Instead, all features are retrieved from the host as described in Part 13.

9a-10
Portrayal processing

The XSLT processing described in Part 9 clause 9-10 is replaced with Lua as described in Part 13.

9a-11
Drawing Instructions

Drawing instructions are provided to the host using DEF as described in Part 13 clause 13-6.1. A single drawing instruction is equivalent to a single DEF element.

This section describes the model and schema for drawing instructions.
9a-11.1
The concepts of drawing instructions

9a-11.1.1
General concept
As in Part 9, the output of the portrayal engine is a set of drawing instructions. These typically link the feature instance to a symbol and/or alert reference. The geometry is either taken from the feature type or can be generated by the portrayal functions. The latter is supported by the concept of augmented geometry as described in Part 9 clause 9-11.1.13 Augmented Geometry.

The conceptual model for Part 9a drawing instructions is a command-driven state machine. This model is consistent with both SVG and S-52 DAI, but differs from Part 9 which uses stateless drawing instructions.
To implement Part 9a drawing instructions, the host must maintain state while executing the drawing instructions for a given feature instance. For example, if a drawing instruction sets a pen colour, that pen colour should also be used for subsequent draw instructions. The state must be reset prior to executing the drawing instructions for each feature instance.

9a-11.2
Model of the Drawing Instructions
As in Part 9, this section describes the output of the portrayal functions. A single domain-specific scripting host function, see clause 9a-14.2.1 HostPortrayalEmit, provides the drawing instructions for each feature instance.

Each drawing instruction is encoded in a DEF element as described in Part 13, clause 13-6.1. A drawing instruction is an ordered pair comprised of a command and a parameter list. The command is encoded in a DEF item, and the commands parameters are encoded in a DEF parameter list.
Table 9a-2 – DEF encoding of Drawing Instructions

	Portrayal Item
	DEF Encoding
	Example

	Drawing Instruction
	Element
	FillColor:CHBRN,0

	Command
	Item
	FillColor

	Parameter List
	Parameter List
	CHBRN,0

	Parameter
	Parameter
	CHBRN

Each drawing instruction contains a single case sensitive command. Each command has zero or more parameters.
There are two types of commands: drawing commands and state commands. Drawing commands instruct the host to render graphics. State commands instruct the host to set the state for subsequent drawing commands.

Each command and its parameters are described in the following sub-sections, grouped by purpose. In the tables which follow, the Type column is as described in Part 13 table 13-7. The X-Ref column refers to the equivalent Part 9 drawing instruction concept. The Part 9 reference may contain relevant information such as range of expected values or units.
9a-11.2.1
Drawing Commands

Drawing commands are used to render graphics. They are analogous to realizations of the Part 9 clause 9-11.2 DrawingInstruction class. The drawing commands are listed in Table 9a-3 and each command is described on the following pages.
Table 9a-3 – Drawing Commands

	Command

	Parameters
	Parameter Type
	Part 9 Reference

	PointInstruction
	Symbol
	String
	9-11.2.6

9-11.2.12

	LineInstruction
	lineStyle
	String
	9-11.2.7

9-11.2.14

9-11.2.15

	LineInstructionUnsuppressed
	lineStyle
	String
	9-11.2.7

9-11.2.14

9-11.2.15

	ColorFill
	Token
	String
	9-12.5.1.4

9-11.2.16

	
	transparency
	Double
	

	AreaFillReference
	Reference
	String
	9-12.5.1.3

9-11.2.16

	PixmapFill
	Reference
	String
	9-12.5.1.5

9-11.2.16

	SymbolFill
	Symbol
	String
	9-12.5.1.6

9-11.2.16

	
	v1
	Vector
	

	
	v2
	Vector
	

	HatchFill
	direction
	Vector
	9-12.5.1.7

9-11.2.16

	
	distance
	Double
	

	
	lineStyle
	String
	

	TextInstruction
	text
	String
	9-11.2.9

9-11.2.11

	CoverageFill
	attributeCode
	String
	9-11.1.12
9-11.2.10

	
	Uom
	String
	

	NullInstruction
	-
	-
	9-11.2.5

The graphic rendering of each drawing command can be modified by preceding state commands, as described in clause 9a-11.2.2.
PointInstruction:symbol
Instructs the host to draw a Portrayal Catalogue symbol, placed as follows:

Table 9a-4 – PointInstruction Symbol Placement

	Geometry Type
	Symbol Placement

	Point
	At the point, then apply LocalOffset

	Line
	Along the line by LinePlacement, then apply LocalOffset

	Area
	At AreaCRS, then apply LocalOffset. Note that this can cause the symbol to be drawn at multiple locations

LineInstruction:lineStyle[,lineStyle,…]
Instructs the host to stroke a line or area geometry using the specified linestyle(s).
The host must ensure line segments with lower drawing priority are suppressed (not drawn) when coincident line segments with higher drawing priority are drawn.

Each linestyle parameter refers to either a linestyle defined within the Portrayal Catalogue or to a linestyle created by a preceding LineStyle command.
Note: Part 10 clause 10a-5.10.1 defines how masked spatial elements are encoded in a dataset. When executing this instruction the host must suppress the portrayal of masked spatial elements.

LineInstructionUnsuppressed:lineStyle[,lineStyle,…]
Instructs the host to stroke a line or area geometry using the specified linestyle(s).

The line segments should be drawn without regard for coincident line segments.

Each linestyle parameter refers to either a linestyle defined within the Portrayal Catalogue or to a linestyle created by a preceding LineStyle command.

Note: Part 10 clause 10a-5.10.1 defines how masked spatial elements are encoded in a dataset. When executing this instruction the host must suppress the portrayal of masked spatial elements.

ColorFill:token[,transparency]
Instructs the host to fill an area using the given colour token and transparency. If transparency is not given, a value of zero is assumed.
AreaFillReference:reference
Instructs the host to fill an area using areaFill (Part 9 clause 9-13.3.10) defined within the Portrayal Catalogue.

PixmapFill:reference
Instructs the host to fill an area using pixmap (Part 9 clause 9-13.3.5) defined within the Portrayal Catalogue.

A preceding AreaCRS command may set the origin of the pattern.

SymbolFill:symbol,v1,v2
Instructs the host to fill an area using a symbol defined within the Portrayal Catalogue. A preceding AreaCRS command may set the origin of the pattern.
symbol
The symbol used for the pattern.
v1
The offset of the next symbol in the first dimension of the pattern according to the local CRS.
v2
The offset of the next symbol in the second dimension of the pattern according to the local CRS.
HatchFill:direction,distance,lineStyle[,lineStyle]
Instructs the host to fill an area using a hatch symbol defined within the Portrayal Catalogue. Direction and distance are as defined in Part 9 clause 9-12.5.1.8.
Each linestyle parameter refers to either a linestyle defined within the Portrayal Catalogue or to a linestyle created by a preceding LineStyle command.

A preceding AreaCRS command may set the origin of the pattern.

direction
The vector defining the direction of the set of lines.
distance
The distance between the lines measure perpendicular to the direction.
lineStyle
A reference to a line style used for each hatch line.
TextInstruction:text[,textViewingGroup[,textPriority]]
Instructs the host to draw the specified text placed as follows:

Table 9a-5 – TextInstruction Initial Placement

	Geometry Type
	Initial Placement

	Point
	Relative to the point

	Line
	Relative to the line as determined by LinePlacement

	Area
	Relative to AreaCRS. Note that this can cause the text to be drawn at multiple locations

Once the initial positioning is determined, the text is offset as specified by state commands LocalOffset and TextVerticalOffset. The text is aligned as specified by state commands TextAlignHorizontal and TextAlignVertical.

If preceded by a FontReference command the font is as specified in the Portrayal Catalogue. Otherwise the host should construct a font using the values specified by preceding FontColor, FontSize, FontProportion, FontWeight, FontSlant, FontSerifs and FontStrikethrough state commands.
text
The text to display.
textViewingGroup
If present, defines an additional viewing group that must be selected in order for the text to be displayed.
textPriority
If present, defines the display prioritry of the text. If not present, the display priority indicated by the DisplayPriority instruction is used.
CoverageFill:attributeCode[,uom]
Instructs the host to fill a coverage using the lookup table entries created via the LookupEntry state command. The host must clear the coverage lookup list upon completion.
attributeCode
Specifies which of the features attributes to use for the lookup.
uom
If present, specifies the unit of measure for the range values in the lookup table. If not present, the range values and attribute value share the same unit of measure as defined in the Feature Catalogue.
NOTE: When associating alerts with coverage values there may or may not be portrayal elements present in the coverage lookup list.
NullInstruction
Used to indicate a feature is purposefully not portrayed. Can associate an alert with a feature or geometry which is not portrayed, or whose alert geometry is different than the portrayed geometry..
9a-11.2.2
State Commands
State commands are used to set or modify the state for drawing commands which follow. To implement the portrayal the host should associate each parameter of a state command with a variable; each state command modifies the value of one or more of these variables.
The host should set the initial state as indicated in the tables of the following subsections. The state should be reset prior to executing the drawing instructions for each feature instance.

For each state command listed in the following sub-sections the applicability is given; this indicates which commands use the variables set by the state command.

Table 9a-6 shows the different types of state commands.

Table 9a-6 – Types of State Commands

	Command Type
	Command
	Purpose

	Visibility
	ViewingGroup
	Modifies the visibility and drawing order of drawing commands

	
	DisplayPlane
	

	
	DrawingPriority
	

	
	ScaleMinimum
	

	
	ScaleMaximum
	

	Transform
	LocalOffset
	Applies transformations to elements drawn by drawing commands

	
	LinePlacement
	

	
	AreaPlacement
	

	
	AreaCRS
	

	
	Rotation
	

	
	ScaleFactor
	

	Pen Style
	PenColor
	Modifies the appearance of lines drawn by drawing commands

	
	PenWidth
	

	Line Style
	LineStyle
	Defines linestyles for use by drawing commands

	
	LineSymbol
	

	
	Dash
	

	Text Style
	FontColor
	Modifies the appearance of text drawn by drawing commands

	
	FontSize
	

	
	FontProportion
	

	
	FontWeight
	

	
	FontSlant
	

	
	FontSerifs
	

	
	FontUnderline
	

	
	FontStrikethrough
	

	
	FontUpperline
	

	
	FontReference
	

	
	TextAlignHorizontal
	

	
	TextAlignVertical
	

	
	TextVerticalOffset
	

	Colour Override
	OverrideColor
	Overrides the colours defined within a symbol or pixmap referenced by drawing commands

	
	OverrideAll
	

	Geometry
	SpatialReference
	Defines new geometries (augmented geometry) or restricts the geometry used by drawing commands

	
	AugmentedPoint
	

	
	AugmentedRay
	

	
	AugmentedPath
	

	
	Polyline
	

	
	Arc3Points
	

	
	ArcByRadius
	

	
	Annulus
	

	
	ClearAugmented
	

	Coverage
	LookupEntry
	Defines lookup entries which can be referenced by the CoverageFill drawing command

	
	NumericAnnotation
	

	
	SymbolAnnotation
	

	
	CoverageColor
	

	Alert
	AlertReference
	Associates geometries with alert catalogue entries

9a-11.2.2.1
Visibility Commands
Visibility commands affect the visibility and drawing order of all subsequent drawing commands. They correspond to attributes of the Part 9 clause 9-11.2.2 DrawingInstruction class.
Table 9a-7 – Visibility Commands

	Command
	Parameters
	Type
	Initial State
	Part 9
	Notes

	ViewingGroup
	viewingGroup
	String
	""
	9-11.1.3
	For example: 21000

	DisplayPlane
	displayPlane
	String
	""
	9-11.1.5
	For example: overRadar

	DrawingPriority
	drawingPriority
	Integer
	0
	9-11.1.6
	

	ScaleMinimum
	scaleMinimum
	Integer
	max integer
	9-11.2.2
	

	ScaleMaximum
	scaleMaximum
	Integer
	min integer
	9-11.2.2
	

ViewingGroup:viewingGroup
Sets the viewing group for drawing commands which follow.
Applicability: All drawing commands except NullInstruction
DisplayPlane:displayPlane
Sets the display plane for drawing commands which follow.
Applicability: All drawing commands except NullInstruction
DrawingPriority:drawingPriority
Sets the drawing priority for drawing commands which follow.
Applicability: All drawing commands except NullInstruction
ScaleMinimum:scaleMinimum
Sets the scale denominator defining the minimum scale for drawing commands which follow.
Applicability: All drawing commands except NullInstruction
ScaleMaximum:scaleMaximum
Sets the scale denominator defining the maximum scale for drawing commands which follow.
Applicability: All drawing commands except NullInstruction
9a-11.2.2.2
Transform Commands

Transform commands apply transformations to elements, such as symbols, rendered by applicable drawing commands which follow.

Table 9a-8 – Transform Commands

	Command
	Parameters
	Type
	Initial State
	Part 9 Reference

	LocalOffset
	xOffsetMM
	Double
	0
	9-12.2.2.7

	
	yOffsetMM
	Double
	0
	

	LinePlacement
	linePlacementMode
	String
	Relative
	9-12.3.1.5

	
	Offset
	Double
	0.5
	

	AreaPlacement
	areaPlacementMode
	String
	VisibleParts
	9-12.3.1.6

	AreaCRS
	areaCRSType
	String
	GlobalGeometry
	9-12.5.1.9

	Rotation
	rotationCRS
	String
	PortrayalCRS
	9-12.2.2.7

9-12.3.1.1

9-12.4.1.4

9-12.6.3.5

	
	Rotation
	Double
	0
	

	ScaleFactor
	scaleFactor
	Double
	1.0
	9-12.2.2.6

LocalOffset:xOffsetMM,yOffsetMM
Specifies an offset from the geographic position using the Local CRS to be applied to subsequent drawing commands.
Applicability: PointInstruction, SymbolFill, TextInstruction
LinePlacement:linePlacementMode,offset
Specifies the placement along a line for symbols or text output by subsequent drawing commands.
linePlacementMode
Relative
offset is in homogenous coordinates, 0 for the start and 1 for the end of the curve.
Absolute
offset specifies the distance from the start of the curve.
Applicability: PointInstruction, LineInstruction, LineInstructionUnsuppressed, TextInstruction
AreaPlacement:areaPlacementMode
Specifies the placement within an area for symbols or text output by subsequent drawing commands.

areaPlacementMode – one of:
VisibleParts

The symbol or text is to be placed at a representative position in each visible part of the surface.
Geographic
The symbol or text is to be placed at a representative position of the geographic object.
Applicability: PointInstruction, TextInstruction
AreaCRS:areaCRSType
Specifies how fill patterns output by subsequent drawing commands are anchored.

areaCRSType – one of:
Global
The anchor point is consistent with a location on the drawing device; for example, starting with the corner of the screen. As the screen pans the pattern will appear to shift/move through the object on screen.
LocalGeometry
The anchor point is consistent with the local geometry of the object being depicted, for example the upper left corner of the object. Patterns of adjacent objects may not match.
GlobalGeometry
The anchor point of the fill pattern is defined at a common location such that patterns remain consistent relative to all area objects.
Applicability: AreaFillReference, PixmapFill, SymbolFill, HatchFill, TextInstruction

Rotation:rotationCRS,rotation
Specifies the rotation angle for symbols or text output by subsequent drawing commands.
rotationCRS – one of:
GeographicCRS
A geographic CRS with axis latitude and longitude measured in degrees. rotation is defined as clockwise from the true north direction.
PortrayalCRS
A Cartesian coordinate system with the y-axis pointing upwards. rotation is defined in degrees clockwise from the positive y-axis.
LocalCRS
A Cartesian coordinate system originated at a local geometry. rotation is in degrees clockwise from the positive y-axis.
LineCRS
A none-Cartesian coordinate system where the x-axis is following the geometry of a curve and the y-axis is perpendicular to the x-axis (positive to the left of the x-axis).
Units on the axes and for distances are millimetres. Angles are measured in degrees clockwise from the positive y-axis.

See Part 9 clause 9-12.2.2.7 for details.

Applicability: PointInstruction, SymbolFill, TextInstruction, CoverageFill
ScaleFactor:scaleFactor
Specifies a scale factor to be applied to symbols or text output by subsequent drawing commands.
Applicability: PointInstruction, SymbolFill, TextInstruction, CoverageFill
9a-11.2.2.3
Line Style Commands

Line style commands create linestyles which may be referenced by subsequent drawing commands. These commands are part of the functionality of the LineStyles package described in Part 9 clause 9-12.4.
Table 9a-9 – LineStyle Commands

	Command
	Parameters
	Type
	Initial State
	Part 9
	Notes

	Dash
	Start
	Double
	-
	9-12.4.1.3
	Units: millimetres

	
	Length
	Double
	-
	
	

	LineSymbol
	reference
	Double
	-
	9-12.4.1.4
	

	
	position
	Double
	-
	
	

	
	rotation
	Double
	0
	
	

	
	crsType
	CRSType
	LocalCRS
	
	

	
	scaleFactor
	Double
	1.0
	
	

	LineStyle
	Name
	String
	-
	9-12.4.1.1
	

	
	intervalLength
	Double
	-
	
	

	
	Width
	Double
	-
	
	

	
	Token
	String
	-
	
	

	
	transparency
	Double
	0
	
	

	
	capStyle
	String
	Butt
	
	

	
	joinStyle
	String
	Bevel
	
	

	
	offset
	Double
	0.0
	
	

Dash:start,length
Specifies a dash pattern for a single subsequent LineStyle command. Can be repeated to specify that multiple dash patterns apply to the single LineStyle command.
NOTE: This command does not set the state for any drawing command; it only sets the state for the LineStyle command.

start
The start of the dash measured from the start of the line along the x-axis of the line CRS (units in millimetres).
length
The length of the dash along the x-axis of the line CRS (units in millimetres).
Applicability: LineStyle
LineSymbol:reference,position[,rotation[,crsType[,scaleFactor]]]
Specifies the use of a symbol for a single subsequent LineStyle command. Can be repeated to specify that multiple symbols apply to the LineStyle command.
reference
A reference to an external definition of the symbol graphic. This refers to an identifier of a portrayal catalogue item.
position
The position of the symbol measured from the start of the repeating interval, along the x-axis of the line CRS (units in millimetres).
rotation
The rotation angle of the symbol.
crsType
The type of the CRS where the symbol has to be transformed. Possible values are LocalCRS and LineCRS.
scaleFactor
The scale factor of the symbol.
Applicability: LineStyle
LineStyle:name,intervalLength,width,token[,transparency[,capStyle[,joinStyle[,offset]]]]
Creates a named linestyle for use by subsequent drawing commands. May be preceded by zero or more Dash and/or LineSymbol commands which apply to the linestyle. If no Dash commands precede the LineStyle command, a solid line is created.
name
A name assigned to the linestyle and used to reference the linestyle from a LineInstruction. In the event of a name collision between a Portrayal Catalogue linestyle and a LineStyle command, the LineStyle command takes precedence.
intervalLength
The length of a repeating interval of the line style along the x-axis of the line CRS (units in mm). Can be omitted if a solid is being defined.
width
Pen width in mm used to draw this line style.
token
Specifies the colour used to draw this line style.
transparency
Specifies the transparency used to draw this line style.
capStyle
The decoration that is applied where a line segment ends. One of Butt, Square, or Round. See Part 9 clause 9-12.4.1.8 CapStyle.
joinStyle
The decoration that is applied where two line segments meet. One of Bevel, Miter, or Round. See part 9 clause 9-12.4.1.7 JoinStyle.
offset
An offset perpendicular to the direction of the line. The value refers to the y-axis of the line CRS (positive to the left, millimetres).
Applicability: LineInstruction, LineInstructionUnsuppressed, HatchFill
9a-11.2.2.4
Text Style Commands
Text style commands modify the appearance of text drawn by subsequent drawing commands.

Table 9a-10 – Text Style Commands

	Command
	Parameters
	Type
	Initial State
	Part 9
	Notes

	FontColor
	token
	String
	""
	9-12.6.3.8

9-12.2.2.3
	Opaque

	
	transparency
	Double
	0
	
	

	FontBackgroundColor
	token
	String
	""
	9-12.6.3.8

9-12.2.2.3
	Transparent

	
	transparency
	Double
	1
	
	

	FontSize
	bodySize
	Double
	10
	9-12.6.3.8
	

	FontProportion
	proportion
	String
	Proportional
	9-12.6.3.11
	

	FontWeight
	weight
	String
	Medium
	9-12.6.3.10
	

	FontSlant
	slant
	String
	Upright
	9-12.6.3.9
	

	FontSerifs
	serifs
	Boolean
	false
	9-12.6.3.2
	

	FontUnderline
	underline
	Boolean
	false
	9-12.6.3.12
	

	FontStrikethrough
	strikethrough
	Boolean
	false
	9-12..6.3.12
	

	FontUpperline
	upperline
	Boolean
	false
	9-12.6.3.12
	

	FontReference
	fontReference
	String
	""
	9-12.6.3.3
	

	TextAlignHorizontal
	horizontalAlignment
	String
	Start
	9-12.6.3.14
	

	TextAlignVertical
	verticalAlignment
	String
	Baseline
	9-12.6.3.13
	

	TextVerticalOffset
	verticalOffset
	Double
	0
	9-12.6.3.8
	

FontColor:token[,transparency]
Specifies the colour and transparency for glyphs drawn by subsequent drawing commands.
Applicability: TextInstruction

FontBackgroundColor:token,transparency
Specifies the colour and transparency used to fill the rectangle surrounding text drawn by subsequent drawing commands.

Applicability: TextInstruction, CoverageFill
FontSize:bodySize
Specifies the size in points for text drawn by subsequent drawing commands.

Applicability: TextInstruction, CoverageFill
FontProportion:proportion
Specifies a font proportion to be used for text drawn by subsequent drawing commands.

proportion – one of:

MonoSpaced
A font where all typefaces have the same width should be selected. Also known as 'typewriter' fonts.
Proportional

A font where each typeface can have a different width should be selected.
Applicability: TextInstruction, CoverageFill
FontWeight:weight
Specifies the font thickness for text drawn by subsequent drawing commands.

weight – one of:

Light
Typefaces are depicted as thin (standard).
Medium
Typefaces are depicted thicker than Light, but not as thick as Bold.
Bold
Typefaces are depicted more prominently (Bold).
Applicability: TextInstruction, CoverageFill
FontSlant:slant
Specifies the slant to be used for text drawn by subsequent drawing commands.

slant – one of:

Upright
Typefaces are upright.
Italics
Typefaces are slanted to the right.
Applicability: TextInstruction, CoverageFill
FontSerifs:serifs
Specifies whether the font used for text drawn by subsequent drawing commands should contain serifs.

Applicability: TextInstruction, CoverageFill
FontUnderline:underline
Specifies whether text drawn by subsequent drawing commands should be underlined.

Applicability: TextInstruction

FontStrikethrough:strikethrough
Specifies whether text drawn by subsequent drawing commands should be depicted with a line through the center of the text.

Applicability: TextInstruction

FontUpperline:upperline
Specifies whether text drawn by subsequent drawing commands should be depicted with a line above the text.

Applicability: TextInstruction

FontReference:fontReference
Specifies text drawn by subsequent drawing commands should be depicted using the specified font from the Portrayal Catalogue. fontReference is the identifier for the external file within the Portrayal Catalogue.
Applicability: TextInstruction

TextAlignHorizontal:horizontalAlignment
Specifies the text placement relative to the anchor point in the horizontal direction for subsequent drawing commands.

horizontalAlignment – one of:

Start
The anchor point is at the start of the text.
Center
The anchor point is at the (horizontal) centre of the text.
End
The anchor point is at the end of the text.
Applicability: TextInstruction

TextAlignVertical:verticalAlignment
Specifies the text placement relative to the anchor point in the vertical direction for subsequent drawing commands.

verticalAlignment – one of:

Top
The anchor point is at the top of the em square.
Center
The anchor point is at the (vertical) centre of the em square.
Baseline
The anchor point is at the baseline of the font.
Bottom
The anchor point is at the bottom of the em square.
Applicability: TextInstruction

TextVerticalOffset:verticalOffset
Specifies the vertical offset in mm above the anchor point of the text drawn by subsequent TextInstruction commands. Used to generate subscripts or superscripts.
Applicability: TextInstruction

9a-11.2.2.5
Colour Override Commands

Colour override commands modify the colour of symbols and pixmaps drawn by subsequent drawing commands.
Table 9a-11 – Colour Override Commands

	Command
	Parameters
	Type
	Initial State
	Part 9
	Notes

	OverrideColor
	colorToken
	String
	N/A
	9-12.2.2.6

9-12.3.1.2
	

	
	colorTransparency
	Double
	N/A
	
	

	
	overrideToken
	String
	N/A
	
	

	
	overrideTransparency
	Double
	N/A
	
	

	OverrideAll
	token
	String
	N/A
	9-12.2.2.5

9-12.3.1.1
	

	
	transparency
	Double
	N/A
	
	

	ClearOverride
	
	
	
	
	

OverrideColor:colorToken,colorTransparency,overrideToken,overrideTransparency
Specifies an override colour which should be used to replace the original colour in a symbol or pixmap rendered via a drawing command. This command can be issued multiple times to specify more than one color substitution.
Applicability: PointInstruction, AreaFillReference, PixmapFill, SymbolFill

OverrideAll:token,transparency
Substitutes all non-transparent colours with the given colour. This command supercedes any OverrideColor commands.
Applicability: PointInstruction, AreaFillReference, PixmapFill, SymbolFill

ClearOverride

Removes all colour substitutions.

Applicability: PointInstruction, AreaFillReference, PixmapFill, SymbolFill
9a-11.2.2.6
Geometry Commands

All drawing commands defined in clause 9a-11.2.1 reference geometries. Normally, this is the geometry of the feature (analogous to Part 9 clause 9-11.2.3 DrawingInstruction::featureReference). The host determines the features geometry using the feature reference provided when drawing instructions are returned from the portrayal via HostPortrayalEmit as described in clause 9a-14.2.1. The geometry commands defined in this section allow the normal behaviour to be overridden.

One method of overriding the normal behaviour is to constrain drawing commands so that they reference either individual geometric elements of a feature; or any other geometries defined in the dataset (analogous to Part 9 clause 9-11.2.3 DrawingInstruction::spatialReference).

The second method of overriding the normal behaviour is to create an augmented geometry (Part 9 clause 9-11.1.13 Augmented Geometry) using a geometry command. Augmented geometry is used when the spatial to be referenced is not present in the dataset. Augmented geometry created by a geometry command will be used by subsequent drawing commands, overriding the features geometry.

This Part does not define separate augmented drawing instructions as in Part 9. Instead, all drawing commands are to use augmented geometry whenever augmented geometry is available.

To deterimine the geometry to be used by a drawing command:

· If an augmented geometry command precedes the drawing command, the most recently defined augmented geometry should be used.

· Otherwise, if the spatial references list is not empty, the drawing command is applied to each spatial reference.
· Otherwise, the features geometry should be used.

To implement augmented paths, the host should maintain a segment list into which the geometries created by the Polyline, Arc3Points, ArcByRadius and Annulus commands are placed. This list maintains the order in which the geometries are created.

Applied geometry commands are removed via the ClearGeometry command, which also clears the segment list. Using ClearGeometry allows switching between referencing the features geometry, augmented geometry, and spatial references.
The geometry commands are listed in the table below. The type point indicates a pair of doubles are passed as parameters.
Table 9a-12 – Geometry Commands

	Command
	Parameters
	Type
	Initial State
	Part 9
	Notes

	SpatialReference
	reference
	String
	-
	9-11.2.4
	

	
	forward
	Boolean
	true
	
	

	AugmentedPoint
	crs
	CRSType
	-
	9-11.2.12
	

	
	x
	Point
	-
	
	

	
	y
	
	-
	
	

	AugmentedRay
	crsDirection
	CRSType
	-
	9-112.14
	

	
	direction
	Double
	-
	
	

	
	crsLength
	CRSType
	-
	
	

	
	length
	Double
	-
	
	

	AugmentedPath
	crsPosition
	CRSType
	-
	9-11.2.15
	

	
	crsAngle
	CRSType
	-
	9-11.2.15
	

	
	crsDistance
	CRSType
	-
	9-11.2.15
	

	Polyline
	point1
	Point[]
	-
	9-12.2.2.11
	

	
	…
	
	
	
	

	
	pointN
	
	
	
	

	Arc3Points
	startPointX
	Point
	-
	9-12.2.2.13
	

	
	startPointY
	
	
	
	

	
	medianPointX
	Point
	-
	
	

	
	medianPointY
	
	
	
	

	
	endPointX
	Point
	-
	
	

	
	endPointY
	
	
	
	

	ArcByRadius
	centerX
	Point
	-
	9-12.2.2.14
	

	
	centerY
	
	
	
	

	
	radius
	Double
	-
	
	

	
	startAngle
	Double
	0
	
	

	
	angularDistance
	Double
	360
	
	

	Annulus
	centerX
	Point
	-
	9-12.2.2.15
	

	
	centerY
	
	
	
	

	
	outerRadius
	Double
	-
	
	

	
	innerRadius
	Double
	outerRadius
	
	

	
	startAngle
	Double
	0
	
	

	
	angularDistance
	Double
	360
	
	

	ClearGeometry
	-
	-
	-
	-
	

SpatialReference:reference[,forward]
Specifies a reference to the spatial type components of the feature that defines the geometry used for the depiction of drawing commands which follow. Not used when the entire geometry of the feature should be depicted. Each time this command is called, a new spatial reference is added to the spatial references list maintained by the host. The spatial references list can be cleared by calling ClearGeometry.
reference
The identifier of the spatial type as defined in Part 13 clause 13-8.
forward
If true the spatial object is used in the direction in which it is stored in the data. Only applies to curves and should be ignored for all other spatial types.
Applicability: All drawing commands
AugmentedPoint:crs,x,y
Specifies a position. Clears any active AugmentedRay and AugmentedPath instructions.
crs – one of:

GeographicCRS
A geographic CRS with axis latitude and longitude measured in degrees.
PortrayalCRS
A Cartesian coordinate system with the y-axis pointing upwards. Units on the axes and for distances are millimetres.
LocalCRS
A Cartesian coordinate system originated at a local geometry. Units on the axes and for distances are millimetres.
x,y
Coordinates of the point.

Applicability: PointInstruction, TextInstruction, NullInstruction
AugmentedRay:crsDirection,direction,crsLength,length
Augments the geometry of a point feature. Specifies a line from the position of the point feature to another position. The position is defined by the direction and the length attributes. Clears any active AugmentedPoint and AugmentedPath instructions.
If crsDirection is PortrayalCRS or LocalCRS then crsLength must be PortrayalCRS or LocalCRS. Similarly, if crsLength is GeographicCRS then crsDirection must be GeographicCRS.
crsDirection and crsLength – each one of:

GeographicCRS
Angles are defined clockwise from the true north direction. Distances will be measured in metres.
PortrayalCRS
A Cartesian coordinate system with the y-axis pointing upwards. Units on the axes and for distances are millimetres. Angles are measured in degrees clockwise from the positive y-axis.
LocalCRS
A Cartesian coordinate system originated at a local geometry. Units on the axes and for distances are millimetres. Angles are measured in degrees clockwise from the positive y-axis.
direction
The direction of the ray relative to the CRS specified.

length

The length of the ray in units depending on the CRS specified.

Applicability: LineInstruction, LineInstructionUnsuppressed, TextInstruction, NullInstruction
AugmentedPath:crsPosition,crsAngle,crsDistance
Instructs the host to gather all segments previously created by Polyline, Arc3Points, ArcByRadius and Annulus commands and group them as a single augmented geometry. The host must then clear the segment list. Clears any active AugmentedPoint and AugmentedRay instructions.
To implement an augmented path, the host must maintain a segment list. Each call to Polyline, Arc3Points, ArcByRadius and Annulus results in the host placing the geometry on the segment list. These items taken in order they are added to the segment list define the augmented path.
The CRS is specified separately for positions, angles and distances.

crsPosition, crsAngle and crsDistance – each one of:

GeographicCRS
A geographic CRS with axis latitude and longitude measured in degrees. Angles are defined clockwise from the true north direction. Distances will be measured in metres.
PortrayalCRS
A Cartesian coordinate system with the y-axis pointing upwards. Units on the axes and for distances are millimetres. Angles are measured in degrees clockwise from the positive y-axis.
LocalCRS
A Cartesian coordinate system originated at a local geometry. Units on the axes and for distances are millimetres. Angles are measured in degrees clockwise from the positive y-axis.
Applicability: All drawing commands except PointInstruction
Polyline:positionXstart,positionYstart,positionXto,positionYto[,positionXto,positionYto…]
Instructs the host to add a polyline to the segment list.

positionXstart,positionYstart,positionXto,positionYto
Coordinates of the segments of the polyline.

Applicability: AugmentedPath
Arc3Points:startPointX,startPointY,medianPointX,medianPointY,endPointX,endPointY
Instructs the host to add an arc defined by three points to the segment list.

startPointX,startPointY
The point where the arc starts.

medianPointX,medianPointY
An arbitrary point on the arc.

endPointX,endPointY
The point where the arc ends.

Applicability: AugmentedPath
ArcByRadius:centerX,centerY,radius[,startAngle,angularDistance]
Instructs the host to add an arc defined by a radius to the segment list.

centerX,centerY
The centre of the arc.

radius
The radius of the circle.

startAngle,angularDistance
The sector defining where the arc starts and ends. If not present the arc is a full circle.

Applicability: AugmentedPath
Annulus:centerX,centerY,outerRadius[,innerRadius[,startAngle,angularDistance]]
Instructs the host to add an annulus to the segment list. An annulus is a ring-shaped region bounded by two concentric circles. It can optionally be bounded by two radii of the circle.
Note that the presence of startAngle and angularDistance parameters does not imply that innerRadius must be present. The following is a valid command: Annulus:0,1,2.34,,56,78
centerX,centerY
The centre of the annulus.

outerRadius

The radius of the larger circle.

innerRadius

The radius of the smaller circle. If not present the segment describes a sector of a circle.

startAngle,angularDistance
The sector of an annulus segment.
Applicability: AugmentedPath
ClearGeometry
Clears any preceding geometry commands and empties the segment and spatial references lists.
Applicability: AugmentedPath, SpatialReference

9a-11.2.2.7
Coverage Commands

Coverage commands define lookup entries which are referenced by the CoverageFill drawing command. These commands are part of the functionality of the Coverage package described in Part 9 clause 9-12.7. The coverage commands are listed in Table 9a-13 below.

Table 9a-13 - Coverage Commands

	Command
	Parameters
	Type
	Initial State
	Part 9
	Notes

	NumericAnnotation
	decimals
	Integer
	-
	9-12.7.4.4
	

	
	championChoice
	ChampionChoice
	-
	
	

	
	buffer
	Double
	0
	
	

	SymbolAnnotation
	symbolRef
	String
	-
	9-12.7.4.5
	

	
	rotationAttribute
	String
	-
	
	

	
	scaleAttribute
	String
	-
	
	

	
	rotationCRS
	CRSType
	PortrayalCRS
	
	

	
	rotationOffset
	Double
	0
	
	

	
	rotationFactor
	Double
	1
	
	

	
	scaleFactor
	Double
	1
	
	

	CoverageColor
	startToken
	String
	-
	9-12.7.4.3
	

	
	startTransparency
	Double
	0
	
	

	
	endToken
	String
	-
	
	

	
	endTransparency
	Double
	0
	
	

	
	penWidth
	Double
	0
	
	

	LookupEntry
	label
	String
	-
	9-12.7.4.2

1-4.5.3.4
	

	
	lower
	Double
	-
	
	

	
	upper
	Double
	-
	
	

	
	closure
	S100_IntervalType
	-
	
	

NumericAnnotation:decimals,championChoice[,buffer]
Specifies the numeric representation of a coverage instruction. When executing the CoverageFill drawing command, the numeric value should be drawn using the currently defined font. However, instead of using the font colour set by FontColor, CoverageColor should be used.
decimals
Number of decimal digits to show in subscript.
championChoice – one of:

Largest
Display the largest value in case of collision.
Smallest
Display the smallest value in case of collision.
buffer
Buffer to apply for collision detection in portrayal units.

Applicability: LookupEntry
SymbolAnnotation:symbolRef,rotationAttribute,scaleAttribute[,rotationCRS,rotationOffset[,rotationFactor[,scaleFactor]]]
Specifies the symbol representation of a coverage instruction.
symbolRef
The symbol from the Portrayal Catalogue to draw.
rotationAttribute
The attribute code of the Coverage Attribute to use for the symbol rotation value.
scaleAttribute
The attribute code of the Coverage attribute to use for scaling the symbol size.
rotationCRS

Specifies the coordinate reference system for the rotation.
rotationOffset
Used to adjust the ‘rotationAttribute’ value by addition before applying. This offset is applied after rotationFactor. If no rotationAttribute is given, this value represents the rotation value to apply to the symbol. A value of 0 indicates no adjustment.

rotationFactor
Used to adjust the ‘rotationAttribute’ value by multiplication before applying. This factor is applied before rotationOffset. A value of 1 indicates no adjustment.

scaleFactor

Used to adjust the ‘scaleAttribute’ value by multiplication before applying. A value of 1 indicates no adjustment.

EXAMPLE: Assume a coverage has wind speed and direction attributes and the portrayal wishes to draw an arrow showing wind direction and whose length is proportion to the wind speed. In this example the wind direction indicates the compass direction of where the wind is coming from and the portrayal wants to indicate the direction the wind is blowing towards. Additionally, the portrayal wants a 20 knot wind speed to be indicated by drawing the arrow at its normal scale. In this case the portrayal needs to rotate the arrow by 180 degrees and scale the arrow by 1/20. The following commands could be used to accomplish the portrayal of the arrow:

SymbolAnnotation:ARROW,windDirection,windSpeed,PortrayalCRS,180,1.0,0.05;
LookupEntry:Wind,0,360,closedInterval;
CoverageFill:windDirection

Applicability: LookupEntry
CoverageColor:startToken,startTransparency[,endToken,endTransparency][,penWidth]
Specifies the colour range to use for a coverage instruction. If endToken and endTransparency are not specified, then a single colour is used.
startToken,startTransparency
The color to assign to the matching range or to use as start point in a color ramp when ‘endColor’ is defined.

endToken,endTransparency
If given, the colour to use as the stopping point in a color ramp. The range of values is spread linearly across the range of colours from ‘startColor’ to ‘endColor’ to produce a gradient effect.

penWidth
Pen width to apply for dot color used for discrete points.

Applicability: LookupEntry
LookupEntry:label,lower,upper,closure

Creates a lookup entry for use by a single subsequent CoverageFill drawing command. This instruction is used to associate preceding NumericAnnotation, SymbolAnnotation and CoverageColor commands with a single lookup table entry.
NOTE: To support associating alerts with coverage values which differ from portrayal, preceding NumericAnnotation, SymbolAnnotation, or CoverageColor commands are not required.
NOTE: subsequent LookupEntry commands require redefinition of NumericAnnotation, SymbolAnnotation, and CoverageColor; for example the state of the other coverage commands should be reset after processing LookupEntry.
label
String used as a display label or legend field.
lower
Lower value of lookup range.
upper
Upper value of lookup range.
Closure
Interval closure for range. See Part 1 clause 1-4.5.3.4.
Applicability: CoverageFill
9a-11.2.2.8 Alert Commands
Alert commands associate alert information with the geometry of a drawing instruction.
Table 9a-14 – Alert Commands

	Command
	Parameters
	Type
	Initial State
	Part 9
	Notes

	AlertReference
	alertReference
	string
	-
	9-11.2.2

9-11.2.5
	

	
	plan
	string
	-
	
	

	
	monitor
	string
	-
	
	

AlertReference[:alertReference[,plan[,monitor]]]
Specifies alert information to be associated with the geometry of drawing instructions which follow.
alertReference
A reference to an alert in the alert catalogue. If not provided, clears any previously applied alert reference.
plan
The viewing group the alert highlight is assigned to when active in route planning. If not provided, no viewing group is assigned and the highlight cannot be disabled.
monitor
The viewing group the alert highlight is assigned to when active in route monitoring. If not provided, no viewing group is assigned and the highlight cannot be disabled.
Applicability: All drawing commands
9a-12
Symbol Definitions

The symbol definitions described in Part 9 clause 9-12 are implemented within the Model of the Drawing Instructions (see clause 9a-11.2).
9a-13
The Portrayal Library

There is no change to the organization structure of the portrayal library as defined in Part 9 clause 9-13.2. The “Rules” folder XSLT contents of Part 9 clause 9-13.2 are replaced with Lua script files. FileType:rules described in Part 9 clause 9-13.3.27 is used to identify each of the Lua script files.
9a-14
Portrayal Domain Specific Functions
The Lua portrayal is an instance of a Part 13 scripting domain. The functions described below are specific to this scripting domain; they are domain specific functions to be used in conjunction with the standard functions detailed in Part 13.
9a-14.1
Portrayal Domain Specific Catalogue Functions

The functions listed on the following clauses are implemented within the Portrayal Catalogue rule files. They can be called by the host, and augment the standard catalogue functions described in Part 13.
9a-14.1.1
Boolean PortrayalMain(String[] featureIDs)
Return Value:
true
Portrayal completed successfully.
false
Portrayal was terminated by the host (host returned false from HostPortrayalEmit).
Parameters:
featureIDs: String[]
An array containing the IDs of the features for which to generate drawing instructions. If this parameter is nil (or missing), the portrayal will generate drawing instructions for all feature instances in the dataset.

Remarks:
This function is called by the host to start the portrayal process for a dataset instance. Subsequently, the portrayal scripts will repeatedly call HostPortrayalEmit, providing the host with the drawing instructions for each feature instance portrayed.
The function returns once the portrayal scripts have run to completion; an error is thrown; or the host returns false from HostPortrayalEmit.
If using a portrayal cache as outlined in clause 9a-5.2.2.1, the host only needs to pass in uncached featureIDs, or featureIDs associated with context parameters whose values have changed.
9a-14.1.2
void PortrayalInitializeContextParameters(ContextParameter[] contextParameters)

Return Value:
void
Parameters:
contextParameters: ContextParameter[]
An array of ContextParameter objects.
Remarks:
Provides the portrayal scripts with the default value for each portrayal context parameter defined within the Portrayal Catalogue. PortrayalCreateContextParameter should be used to create each entry. The host is responsible for retrieving the portrayal context parameters from the Portrayal Catalogue.
9a-14.1.3
ContextParameter PortrayalCreateContextParameter(String contextParameterName, String contextParameterType, String defaultValue)

Return Value:
A ContextParameter storing the defaultValue with the contextParameterName.
Parameters:
contextParameterName: String
The name of a portrayal context parameter. Valid names are defined in the Portrayal Catalogue.
contextParameterType: String
The type of the portrayal context parameter. Valid values are Boolean, Integer, Real, Text and Date.
defaultValue: String
The default value for the portrayal context parameter. This value is encoded as described in Part 13 clause 13-8.1.
Remarks:
Creates a ContextParameter object for use within the scripting environment.
9a-14.1.4
void PortrayalSetContextParameter(String contextParameterName, String value)

Return Value:
void
Parameters:
contextParameterName: String
The name of a portrayal context parameter.
value: String
The new value for the portrayal context parameter. This value is encoded as described in Part 13 clause 13-8.1.
Remarks:
Allows the host to modify the value of a portrayal context parameter. The context parameter must be created via PortrayalInitializeContextParameters prior to being modified.
9a-14.2
Portrayal Domain Specific Host Functions

The host must implement the function described in the following clause in order to support portrayal. This function is called from the portrayal domain specific catalogue functions, and augments the standard host functions described in Part 13.
9a-14.2.1
Boolean HostPortrayalEmit(String featureID, String drawingInstructions, String observedParameters)
Return Value:
True
Continue script processing. The portrayal engine will continue to process feature instances.
False
Terminate script processing. No additional feature instances will be processed by the portrayal engine.
Parameters:
featureID: String
Used by the host to uniquely identify a feature instance.

drawingInstructions: String
All of the drawing instructions generated for the feature instance identified by featureID. This string is in Data Exchange Format (DEF) as described in Part 13.
observedParameters: String
The context parameters that were observed during the generation of the drawing instructions for this feature. This string is in DEF.
Remarks:
This function is called from the Portrayal Catalogue once per feature instance to provide drawing instructions to the host.
The host can optionally use the observed context parameters to perform drawing instruction caching.
Page intentionally left blank

Figure 9a-� SEQ Figure_9A- * ARABIC �1� – General portrayal model

Portrayal Engine

Rendering Engine

Feature Data

Portrayal functions

Drawing Instructions

Portrayal Output

Symbol Definitions

Figure 9a-2 – Portrayal process

Figure 9a-3 - Lua Portrayal Process

�All references need to be updated based on changes to part 9

Part 9a – Portrayal (LUA)

PAGE
Part 9a – Portrayal (LUA)

