
1. INTRODUCTION

Vector fie ld data are produced by scient i fic
experimentations and numerical simulations, which
are now widely used to study complex dynamic
phenomena, with various areas of applicability, such
as global climate modelling and computational fluid
dynamics. Large-scale, time-varying simulations are
able to produce large amounts of data in a short time
and raises the need for effective techniques to get
insight in the data and to extract meaningful
information. This paper presents a hierarchical
approach for the visualizat ion of large two-
dimensional steady vector fields.

Several techniques have been proposed to visualize
steady flow fields, including icon plots, l ine
representations, and textures. By covering the image
with a set of streamlines, the global structure of the
vector field can be visualized, its degree of turbulence
can be estimated, and the position of all critical
points, such as sinks and saddle points, can be easily
located in the domain.

To obtain good quality images requires to control
the placement of streamlines so as to ensure a uniform
density of colored pixels. This issue was addressed by
Turk and Banks in [1], and their method was extended
to curvilinear grids later [2]. In [3] we have presented
a more effective approach, based on a direct

placement technique, which uses the separating
distance between streamlines to control the density in
the image. Here we propose an extension of this
technique in order to allow the computation and
visualization of streamline images at different levels
of density.
The process of exploring a large vector field generally
requires different kind of visualization techniques. At
the beginning only a rough representation on the
whole data domain is needed. As the user refines the
region of interest more detailed visualizations are
required, to give accurate information on specific
parts of the vector field. It should also be possible to
visualize different regions with different degrees of
accuracy on a single image. So we are interested in
how to control the density of streamlines in an image,
how to compute a set of images of the same vector
field with different densities and hence how to
interactively change the desired density of parts of the
image while maintaining a given criterion of quality,
that is a uniform distribution of streamlines within
every part of the image. The main features of the
method proposed in this paper are:

• the computation of streamline-based images of a
vector field with an optimized visual quality. This
is achieved by maximizing the average length of
the streamlines used to cover the image domain
and by obtaining a uniform density of stream-

MULTIRESOLUTION FLOW VISUALIZATION

Bruno Jobard and Wilfrid Lefer

Université du Littoral Côte d'Opale
B.P. 719, 62228 Calais, France

e-mail: {jobard,lefer}@lil.univ-littoral.fr

 ABSTRACT

Flow visualization has been an active research field for several years and various techniques have
been proposed to visualize vector fields, streamlines and textures being the most effective and
popular ones. While streamlines are suitable to get rough information on the behavior of the flow,
textures depict the flow properties at the pixel level. Depending on the situation the suitable
representation could be streamlines or texture. This paper presents a method to compute a sequence
of streamline-based images of a vector field with different densities, ranging from sparse to texture-
like representations. It is based on an effective streamline placement algorithm and a production
scheme that recalls those used in the multiresolution theory. Indeed a streamline defined at level J of
the hierarchy is defined for all levels J’>J. A viewer allows us to interactively select the desired
density while zooming in and out in a vector field. The density of streamlines in the image can also
be automatically computed as a function of a derived quantity, such as velocity or vorticity.

Keywords: Flow Visualization, Streamlines, Multiresolution Representation, Interactive
Visualization, Large Vector Fields.



lines, i.e. a uniform density of colored pixels in
the image. The tapering technique, which has
proved to be an efficient factor of enhancement
of the quality of streamline-based images, has
been easily integrated in our algorithm without
any additional computation cost.

• the production of images of an arbitrary density,
ranging from sparse representations, that is clas-
sical streamline-based images, to dense ones,
similarly to those produced by techniques such as
Spot Noise [5] and LIC [6][7].

• a strong and efficient control of the density of the
image by the user. The density is expressed as the
distance between adjacent streamlines, which is
actually a criterion that can be easily determined
visually, thus it is quite easy for the user to
parameterize our algorithm.

• a representation of streamline-based images at
different level of density, an algorithm to produce
such a hierarchical representation, and a tech-
nique to interactively select the desired level of
density, for instance during the process of inter-
active exploration of large vector fields.

• low computation times. The principle of our
algorithm is to place each streamline directly at
its final place in the image, so that there is no
superfluous computation. Indeed we prove that
the computation terminates and the computation
times for a complete hierarchy of streamlines is
those of a single image of the highest density.

The remainder of this paper is organized as
follows. Section 2 gives the algorithm of our
streamline placement algorithm. Section 3 presents
i ts extension to produce representat ions of
streamline-based images at different levels of
dens i ty. Sec t ion 4 shows how to use such
representations for the interactive exploration of
large vector fileds and section 5 allows us to
conclude.

2. STREAMLINE PLACEMENT

Our streamline placement technique is described in
[3]. Here we just give the main algorithm, which is
now part of our multiresolution method. The
algorithm uses a FIFO list F, which contains the
streamlines that have been placed in the image but
not yet used for generating new ones. The algorithm
generally starts by randomly selecting an initial seed
point, from which a first streamline is integrated and
put into F. But F can be initialized with any set of
streamlines as well, which will be useful for
generating images of different densities. In the main
loop of the algorithm, a streamline is extracted from
F and used for generating new streamlines at its
neighborhood. The IntegrateStreamline() function
computes a new streamline from a given seed point.
A streamline is considered as valid if it has the
required minimal length. After a new valid
streamline has been computed it is necessary to
update the list of seed points so as to delete the seed
points that are no longer valid. The algorithm finishes
when F is empty. This method ensures that we obtain

a complete and uniform coverage of the image, thus
information about the vector field is available at any
point.
By setting the separating distance appropriately, we
are able to produce both sparse and dense (texture-
like) visualizations with a unified streamline-based
approach.

3. MULTIRESOLUTION STREAMLINE SETS

There are at least two situations in which a
multiresolution streamlines set could be of great
interest: enrichment and zoom. Enrichment consists
in getting more details from a specific area of interest
by adding more streamlines in this region. Zooming
means the ability for the user to zoom in and out
while maintaining the same density in the image.
These two important features in the context of
interactive exploration of vector fields can be
supported through a multiresolution representation of
streamline-based images.

The multiresolution theory is based on the concept
of nested spaces, a direct consequence of this being
the property that a vector defined at a given level J of
the hierarchy is defined for all levels J’>J too.
Although there is no such mathematical theory
behind our multiresolution representation, this last
feature is part of our method, that is a streamline
defined at level J is defined for all levels J’>J too.
This is a direct consequence of our multiresolution
streamlines generation method described in section
3.1. The corresponding algorithm is given in section
3.2.

3.1 Generating Multiresolution Streamlines
Images

The set of images at different densities is generated
from the lowest density to the highest one. A first set

Function PlaceStreamlines (V, Linit, dsep): Lplaced

in: V : vector field
Linit : initial streamlines set
dsep : separating distance

out: Lplaced : final streamlines set

Lplaced := Linit
Foreach streamline S in Linit Do

Push(F, S)
EndForeach
dseed := dsep * ratioseed/sep
While F is not empty Do

Scur := Pop(F)
Lsp := seed points collection at dseed from Scur
Foreach seed point P in Lsp Do

Snew := IntegrateStreamline(V, Lplaced, p, dseed)
If Snew is valid Then

Push(F, Snew)
Lplaced := Lplaced + Snew
Update Lsp

EndIf
EndForeach

EndWhile
Return Lplaced



of evenly spaced streamlines at the lowest density is
computed, which yields the image at level 0 of the
hierarchy. Then level 1, whose density is higher than
level 0, is obtained by adding a set of streamlines to
the streamlines defined at level 0, as shown by figure
1. Then the process is repeated until the desired
dens i ty has been reached. Thus , as for the
multiresolution theory, a streamline computed at
level J exists for all levels J’>J. Now you can
understand why the feature of our streamline
placement algorithm, which uses an arbitrary initial
set of streamlines, is important.

Figure 1: The process of generating multiresolution
streamline-based images.

3.2 Algorithm

Our algorithm for generating multidensity images
takes as entry parameters the number of levels to be
generated and the required densities for the images at
the first and last levels of the hierarchy. After the
image at level 0 has been computed, the generation
of an image for a given level consists in completing
the streamlines set of the previous level by new
streamlines in order to reach the required density. To
do this we use the streamline placement algorithm

described in section 2. From one image to the next
the separating distance is decreased according to a
geometric series, that is dj+1 = dj * reduction_coef.
It is possible to start with an arbitrary initial set of
streamlines. In this case new streamlines will be
added to obtain the image at level 0, then the
algorithm processes as explained above. Streamlines
in the hierarchy are stored as lists of sample points,
they are rasterized only during rendering, which is
quite less memory expensive as if all the images at
the different levels were stored.

4. INTERACTIVE WALKTHROUGHS IN
COMPLEX VECTOR FIELDS

Streamlines are not rasterized in the image as they
are computed but rather they are stored as lists of
sample points. Thus several rendering modes can be
used to make images of these streamlines, depending
on which kind of representation is needed, sparse or
dense, possibly with glyphs added to the streamlines.
Cho o s ing a l a rge d i s t anc e y i e l d s spa r se
representations, which evoke traditional hand-drawn
pictures. Choosing a minimal distance allows to
produce texture-like representations, such as those
produced by methods like Spot Noise [5] or LIC
[6][7].
In order to provide the user with an effective tool for
exploring large-scale vector fields, we have
developed a multiresolution viewer to navigate
interactively within the data. The viewer uses a
hierarchy of streamlines sets at different levels of
density and allows the user to select the level of
details interactively. Moving from level J to the next
level J’ consists in either adding the streamlines
generated at level J’ or deleting streamlines
generated at level J. Since streamlines are stored as
lists of sample points in the hierarchy, drawing or
deleting a streamline involves its rasterization in the
image. This is not a time-consuming operation and
indeed moving from a level to the next is achieved
instantaneously. We could also make this operation
real ly smooth by using so-cal led geomorph
functions, whose aim is to make the apparition or
disappearance of streamlines as smooth as not to

L
4

placed

L
3

placed

L
2

placed

L
1

placed

L
0

placed

L
0 1→
placed

L
0 2→
placed

L
0 3→
placed

L
0 4→
placed

Function PlaceStreamlinesMultiResolution (V, Linit,
min_dsep, max_dsep, Jmax): Lplaced

in: V : vector field
Linit : initial streamlines set
min_dsep : separating distance at J=0
max_dsep : separating distance at J=Jmax
Jmax : number of levels minus 1

out: Lplaced : final streamlines set

reduction_coef := pow(min_dsep/max_dsep, 1.0/Jmax)
Lplaced := Linit
dcur := max_dsep
While dcur > min_dsep Do

Lplaced := PlaceStreamlines(V, Lplaced, dcur)
dcur := dcur * reduction_coef

EndWhile
Return Lplaced



disturb the observer. In [4] we have proposed such
kind of mechanism for handling the apparition and
disappearance of streamlines in the context of
visualization of time-varying vector fields.

As an enrichment example (see section 3) it is
possible to generate an image with varying densities,
according to the degree of interest of the different
areas or any scalar quantity.

The main problem while zooming on an image is
that the amount of details is generally not adapted
accordingly. The consequence is that some details are
not visible at certain scales and the image lacks
details at other scales. Actually the level of details
should be evaluated as a function of the image size.
Figure 2 illustrates the possibilities our viewer offers
for managing the zoom function. The density of
streamlines has been set by the user and is maintained
continuously during the exploration process, the «best
matching» level of the hierarchy being selected at any
time.

5. CONCLUSION

A new method has been proposed, which generates
streamline-based images at different levels of density.
The streamlines are stored as lists of sample points
and the right set of streamlines is selected for
rasterization as a function of the desired density,
which can be computed automatically, as a function
of a derived quantity, or set by the user. Thus it is
possible to zoom in and out in a complex vector field
while maintaining a constant density of streamlines in
the image. The placement technique used by our
method has proved to be very effective, computing a
dense image being achieved in a couple of seconds on
any today processor (see [3] for computation times).
Let us remark that the number of streamlines in a
whole hierarchy is the same as for an image at the
highest density, only the organization of the
streamlines differs. Hence the time necessary to
produce the hierarchy is a couple of seconds.

In certain situations it is useful to compute only a
subset of s t reamlines and to visual ize them
immediately. For instance, at the beginning of an

exploration process of a large vector field, when the
user try to get insight in the data and to identify
regions of interest, only a sparse image of the whole
domain is required. Since our method computes
streamlines at increasing density levels, it perfectly
fits the requirements of interactive visualization of
large data sets.

REFERENCES

[1] Turk, G. and D. Banks. Image-Guided Streamline
Placement. Computer Graphics Annual
Conference Series (Proceedings of
SIGGRAPH’96, August 4-9, 1996), pages 453-
460, ACM Press.

[2] Mao, X., Y. Hatanaka, H. Higashida and A.
Imamiya. Image-Guided Streamline Placement
on Curvilinear Grid Surfaces. In D. Ebert, H.
Rushmeier and H. Hagen, Editors (Proceedings
of IEEE Visualization’98, October 18-23, 1998),
pages 135-142, IEEE Press.

[3] Jobard, B. and W. Lefer. Creating Evenly-Spaced
Streamlines of Arbitrary Density. In W. Lefer and
M. Grave, Editors, Visualization in Scientific
Computing’97 (Proceedings of the 8th
Eurographics Workshop on Visualization in
Scientific Computing’97, April 28-30, 1997),
pages 43-55, Springer-Wien-New-York.

[4] Jobard, B. and W. Lefer. Unsteady Flow
Visualization by Animating Evenly-Spaced
Streamlines, Eurographic’00, August 20-25, 2000.

[5] van Wijk, J. Spot Noise-Texture Synthesis for
Data Visualization. Computer Graphics 25(4)
(Proccedings of SIGGRAPH’91, July 28 - August
2, 1991), pages 309-318, ACM Press.

[6] Cabral, B. and L. Leedom. Imaging Vector Fields
Using Line Convolution. In Computer Graphics
(Proceedings of SIGGRAPH’93), pages 263-272.
ACM Press.

[7] Stalling, D. and H-C. Hege. Fast and Resolution
Independant Line Integral Convolution.
Computer Graphics Annual Conference Series
(Proceedings of SIGGRAPH’95, August 6-11,
1995), pages 249-258, ACM Press.

Figure 2: Three snapshots of an interactive exploration of a vector field using our multiresolution
viewer. The suitable level of the hierarchy is selected at any time to maintain a roughly constant density

of streamlines.


