

TSMAD27-4.3.1B

S-100 – Part 1

Conceptual Schema Language

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language

Contents

1-1 Scope .. 1
1-2 Conformance ... 1
1-3 Normative references .. 1
1-4 The S-100 UML Profile .. 2
1-4.1 Introduction .. 2
1-4.2 General usage of UML .. 2
1-4.3 Classes .. 2
1-4.4 Attributes ... 3
1-4.5 Basic data types .. 3
1-4.5.1 General considerations ... 3
1-4.5.2 Primitive types ... 3
1-4.5.3 Complex types ... 4
1-4.6 Predefined derived types... 8
1-4.7 Codelist types .. 8
1-4.8 Enumerated types ... 10
1-4.9 Relationships and associations ... 10
1-4.9.1 Relationships ... 10
1-4.9.2 Association, composition and aggregation .. 11
1-4.10 Stereotypes ... 13
1-4.10.1 Use of standard UML stereotypes for class/classifier ... 13
1-4.11 Optional, conditional and mandatory – attributes and associations 14
1-4.12 Naming and name spaces... 14
1-4.13 Notes ... 15
1-4.14 Packages ... 15
1-4.15 Documentation of models in S-100 ... 16
1-1 Scope .. 1
1-2 Conformance ... 1
1-3 Normative references .. 1
1-4 The S-100 UML Profile .. 2
1-4.1 Introduction .. 2
1-4.2 General usage of UML .. 2
1-4.3 Classes .. 2
1-4.4 Attributes ... 3
1-4.5 Basic data types .. 3
1-4.5.1 General considerations ... 3
1-4.5.2 Primitive types ... 3
1-4.5.3 Complex types ... 4
1-4.6 Enumerated types ... 7
1-4.7 Relationships and associations ... 8
1-4.7.1 Relationships ... 8
1-4.7.2 Association, composition and aggregation .. 9
1-4.8 Stereotypes ... 11
1-4.8.1 Use of standard UML stereotypes for class/classifier ... 11
1-4.9 Optional, conditional and mandatory – attributes and associations 11
1-4.10 Naming and name spaces... 12
1-4.11 Notes ... 13
1-4.12 Packages ... 13
1-4.13 Documentation of models in S-100 ... 14

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language 1

1-1 Scope

This Part defines the conceptual schema language and basic data types for use within the
IHO community. It identifies the combination of the Unified Modeling Language (UML) static
structure diagram, and a set of basic data type definitions as the conceptual schema
language for specification of geographic information. (UML is a standardized general-purpose
modelling language in the field of software engineering. It includes a set of graphical notation
techniques to create abstract models of specific systems. UML combines the best practice
from data modelling concepts such as entity relationship diagrams, work flow, object
modelling and component modelling).

Secondly, this Part provides guidelines on how UML should be used to create standardized
geographic information and service models that are a basis for achieving the goal of
interoperability. Since it deals with the UML, a section with specific UML terms and definitions
is provided, in addition to these terms being included in Annex 1 (Terms and Definitions).

1-2 Conformance

Any conceptual schema written for a specification that claims conformance to this part of S-
100 shall conform to the rules set out in clause 5. This profile conforms to conformance class
2 of ISO 19106:2004.

1-3 Normative references

ISO 19103:2005(E), Geographic information — Conceptual schema language
 ISO 8601:2004(E), Data elements and interchange formats — Information interchange —
Representation of dates and times
ISO 19136: Geographic Information – Geography Markup Language
ISO 25964-1: Information and documentation — Thesauri and interoperability with other
vocabularies — Part 1: Thesauri for information retrieval.
ISO 25964-2: Information and documentation — Thesauri and interoperability with other
vocabularies — Part 2: Interoperability with other vocabularies
OGC 10-129r1: Geographic Information – Geography Markup Language (GML) – Extended
schemas and encoding rules
OMG Unified Modeling Language (OMG UML), Superstructure, V2.1.2
RFC 3986, Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee, R. Fielding, L.
Masinter. Internet Standard 66, IETF. URL: http://www.ietf.org/rfc/rfc3986.txt or
http://www.rfc-editor.org/info/std66
RFC 2141, URN Syntax. R. Moats. IETF RFC 2141, May 1997. URL: http://www.rfc-
editor.org/info/rfc2141
SKOS: SKOS – Simple Knowledge Organization System – Reference. W3C
Recommendation, 2009. http://www.w3.org/TR/2009/REC-skos-reference-20090818/.

http://www.ietf.org/rfc/rfc3986.txt
http://www.rfc-editor.org/info/std66
http://www.rfc-editor.org/info/rfc2141
http://www.rfc-editor.org/info/rfc2141

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language 2

1-4 The S-100 UML Profile

1-4.1 Introduction

This clause provides rules and guidelines on the use of UML within the field of geographic
information.

The subclauses are structured as follows:

1) General usage of UML

2) Classes

3) Attributes

4) Basic data types

5) Enumerated types

6) Predefined derived types

7) Relationships and associations

8) Stereotypes

9) Optional, conditional and mandatory – attributes and associations

10) Naming and name spaces

11) Notes

12) Packages

13) Documentation of models

1-4.2 General usage of UML

UML (The Unified Modeling Language) shall be used in a manner that is consistent with UML
2. Normative models shall use class diagrams and package diagrams. Other UML diagram-
types may be used informatively. All normative models shall contain complete definitions of
attributes, associations, and appropriate data type definitions.

1-4.3 Classes

A class is a description of a set of objects that share the same attributes, operations,
methods, relationships, behaviour and constraints. A class represents a concept being
modelled. Depending on the kind of model, the concept may be based on the real world (for a
conceptual model), or it may be based on implementation between platform independent
system concepts (for specification models) or platform specific system concepts (for
implementation models).

A classifier is a generalization of a class that includes other class-like elements, such as data
types, actors and components. A UML class has a name, a set of attributes, a set of
operations and constraints. In S-100 operations are not used. A class may participate in
associations.

A class according to the S-100 parts is viewed as a specification and not as an
implementation.

The use of multiple inheritance shall be minimized, because it tends to increase model
complexity.

An Abstract class is specified by having the class name in italics.

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language 3

1-4.4 Attributes

UML notation for an attribute has the form:

optvisibilityopt name : optpackage ::opt opttypeopt opt[multiplicity] opt opt= initial valueopt opt{property-
string}opt

An attribute must be unique within the context of a class and its supertypes, or else be a
derived attribute, i.e. an attribute redefined from a supertype.

The visibility of attributes is shown by the symbols in Table 1-1. Protected and private
visibility is normally not used in the standard specifications. The appropriate visibility symbols
shall be used. The same visibility symbols are used for associations.

Table 1-1 — Visibility of Attributes

Symbol Description

+ Public visibility

Protected visibility

- Private visibility

/ Derived Attribute

All attributes must be typed and the type must exist, the constructed/defined types. A type
must always be specified, there is no default type.
If no explicit multiplicity is given, it is assumed to be 1.
An attribute may define a default value, which is used when an object of that type is created.
Default values are defined by explicit default values in the UML definition of the attribute.
The following properties can be used:

 readOnly – the value of the attribute cannot be changed and must be initialised.

 ordered – applies to attributes of a multiplicity of more than one in which the order of
the elements is meaningful and must be maintained.

EXAMPLES + center: Point = (0,0) {readOnly}
+ origin: Point [0..1] // multiplicity 0..1 means that this is optional
+ controlPoints : Point [2..*] {ordered}

1-4.5 Basic data types

1-4.5.1 General considerations

The basic data types are grouped into two categories,:

1) Primitive types: Fundamental types for representing values, e.g. CharacterString,
Integer, Boolean, Date, Time, etc.

2) Complex types: A combination of types, e.g. a combination of measure types and
units of measurement.

The repertoire of basic data types is described in the following subclauses.

1-4.5.2 Primitive types

The following primitive types are supported in the S-100 UML Diagrams.

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language 4

Table 1-2 — Data Types

Name Description

Integer A signed integer number, the representation of an integer is encapsulation and usage
dependent.

EXAMPLE 29, -65547

PositiveInteger An unsigned integer number greater than 0.

NonNegativeInteger An unsigned integer number greater than or equal to 0

Real A signed real (floating point) number consisting of a mantissa and an exponent, the
representation of a real is encapsulation and usage dependent.

EXAMPLE 23.501, -1.234E-4, -23.0

Boolean A value representing binary logic. The value can be either true or false.

CharacterString A CharacterString is an arbitrary-length sequence of characters including accents and
special characters from repertoire of one of the adopted character sets

Date A date gives values for year, month and day according to the Gregorian Calendar.
Character encoding of a date is a string which shall follow the calendar date format
(complete representation, basic format) for date specified by ISO 8601.

EXAMPLE 19980918 (YYYYMMDD)

Time A time is given by an hour, minute and second. Character encoding of a time is a string
that follows the local time (complete representation, basic format) format defined in ISO
8601.

Time zone according to UTC is optional.

EXAMPLE 183059 or 183059+0100 or 183059Z

The complete representation of the time of 27 minutes and 46 seconds past 15 hours
locally in Geneva (in winter one hour ahead of UTC), and in New York (in winter five
hours behind UTC), together with the indication of the difference between the time scale
of local time and UTC, are used as examples.

Geneva: 1527460100

New York: 1527460500

DateTime A DateTime is a combination of a date and a time type. Character encoding of a
DateTime shall follow ISO 8601 (see above).

EXAMPLE: 19850412T101530

TruncatedDateTime A TruncatedDateTime allows a partial TM Position to be given. At least one of the
following components must be present with omitted elements replaced by the appropriate
number of hyphens.

year – integer between 0000 - 9999

month – integer between 01-12

day – integer between 01 and 28, 29, 30, or 31 depending on year and month values

time – Time type (see above)

1-4.5.3 Complex types

1-4.5.3.1 UnlimitedInteger

UnlimitedIntege r

+ infinite: Boolean

+ value: Integer [0..1]

Figure 1-1 - UnlimitedInteger

A signed integer number whose value may be infinite.

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language 5

1-4.5.3.2 Matrix

Figure 1-2 – Matrix

A grid of either real or integer elements.

1-4.5.3.3 S100_Multiplicity

Figure 1-3 – S100_Multiplicity

Defines a multiplicity range from lower to upper. The upper boundary may be infinite.

1-4.5.3.4 S100_NumericRange

«enumeration»

S100_Interv alType

«enum»

 openInterval

 geLtInterval

 gtLeInterval

 closedInterval

 gtSemiInterval

 geSemiInterval

 ltSemiInterval

 leSemiInterval

S100_ NumericRange

+ lower: Real [0..1]

+ upper: Real [0..1]

+ closure: S100_IntervalType

Figure 1-4 – S100_NumericRange

Specifies a numeric interval by its lower and upper boundary and the closure type of the
interval.

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language 6

NOTE The attribute lower must be used for all closures except ltSemiInterval or leSemiInterval. The
attribute upper must be used for all closures except gtSemiInterval or geSemiInterval.

NOTE A single-value interval shall be encoded with upper = lower and set closure to
closedInterval.

The closure of the interval is defined by the enumeration S100_IntervalType. The literals have
the following meaning:

Table 1-3 — Interval Types

Name Description Notation Definition (where a ≤ b)

openInterval The open interval (a,b) a < x < b

geLtInterval The right half-open interval [a,b) a ≤ x < b

gtLeInterval The left half-open interval (a,b] a < x ≤ b

closedInterval The closed interval [a,b] a≤ x ≤ b

gtSemiInterval The left half-open ray (a,∞) a < x

geSemiInterval The left closed ray [a,∞) a ≤ x

ltSemiInterval The right half-open ray (-∞,a) x < a

leSemiInterval The right closed ray (-∞,a] x ≤ a

NOTE Intervals using the round brackets (or) as in the general interval (a,b) or specific examples (-
1,3) and (2,4) are called open intervals and the endpoints are not included in the set. Intervals using
the square brackets [or] as in the general interval [a,b] or specific examples [-1,3] and [2,4] are called
closed intervals and the endpoints are included in the set. Intervals using both square and round
brackets [and) or (and] as in the general intervals (a,b] and [a,b) or specific examples [-1,3) and (2,4]
are called half-closed intervals or half-open intervals.

NOTE Intervals that have one of as an end point are called rays or half-lines.

EXAMPLE The interval "(10,42)" indicates the set of all real numbers between 10 and 42 but
does not include 10 or 42, the first and last numbers of the interval, respectively. The interval "[10,42]"
includes every number between 10 and 42 as well as 10 and 42.

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language 7

1-4.5.3.5 S100_UnitOfMeasure

A unit of measurement is a well defined comparator for a magnitude.

In S-100 a unit of measure is comprised of a name and optionally of a definition and a
symbol.

S100_UnitOfMeasure

+ name: CharacterString

+ definition: CharacterString [0..1]

+ symbol: CharacterString [0..1]

S100_Measure

+ value: Real

S100_ Length S100_Angle

+unitOfMeasure 1

Figure 1-5 – S100_UnitOfMeasure

1-4.5.3.6 S100_Measure

A measure is the result of a measurement. A measurement is the estimation of the magnitude
of some characteristic of an entity, such as its length or weight, relative to a unit of
measurement. A measure consists of the actual magnitude (the value) and the unit of
measurement.

1-4.5.3.7 S100_Length

The measure of distance as an integral, for example the length of curve, or the perimeter of a
polygon as the length of the boundary.

1-4.5.3.8 S100_Angle

The amount of rotation needed to bring one line or plane into coincidence with another,
generally measured in radians or degrees.

1-4.5.3.9 S100_IndeterminateDateTime

An indeterminate instant related by a specified temporal relation to a date and time specified
in truncated date-time format. The temporal relations allowed are „before‟ and „after‟ and
indicate respectively that the instant is before or after the time instant specified by the date-
time component.

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language 8

Figure 1-6 – S100_IndeterminateDateTime

1-4.6 Predefined derived types

Derived types are derived from the basic types or other derived types by restriction of the
range of allowed values. The following derived types are defined in S-100. Product
specifications may define additional derived types.

Table 1-4 — Predefined Derived Types

Name Description Derived From

URI A uniform resource identifier as defined in RFC 3986. Character encoding
of a URI shall follow the syntax rules defined in RFC 3986.

EXAMPLE http://registry.iho.int

CharacterString

URL A uniform resource locator (URL) is a URI that provides a means of
locating the resource by describing its primary access mechanism (RFC
3986).

EXAMPLE http://registry.iho.int

URI

URN A persistent, location-independent, resource identifier that follows the
syntax and semantics for URNs specified in RFC 2141.

EXAMPLE urn:iho:s101:1:0:0:AnchorageArea

URI

1-4.7 Codelist types

CodeList types may be used for open enumerations whose membership cannot be known at
the level of the product specification, for reuse of information model fragments, or for more
efficient catalogue management. Specifically, they may be used:

a) for enumerations whose members are not all knowable at the level of the application
schema;

b) for lists defined or controlled by external authorities;

c) for lists common to multiple S-100 domains;

d) if the set of allowed values needs to be extended without a major revision of the data
specification;

e) long lists of potential values which would clutter or bloat feature catalogues.

For example, ISO 19115 (Metadata) defines several codelists, because it needs to define
enumerated types whose membership is determined by domain and circumstances (e.g.,
distribution media).

A codelist type declaration defines either:

 a list of valid key-value combinations (i.e., code-value mappings) with a provision for
allowing user communities to provide allowed values in a specified format; or,

 a dictionary (vocabulary) of key-value combinations in a known format, identifiable by
a Uniform Resource Identifier and which can be located by the application of standard
modern techniques for locating resources.

Code lists are modelled as classes that are stereotyped as <<Codelist>>. Code lists of the
first form must list the known literals as attributes. In the second form, no attributes are listed.

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language 9

A CodeList classifier must have tagged values which define its representation and
extensibility, and may have a tagged value which hints at the anticipated encoding. Figure 1-7
shows two examples of codelists – the Languages codelist is an example of a codelist
modelled as an extensible enumeration (indicated by the tagged values asDictionary=false
and extensible=true) and the Countries codelist is an example of a codelist modelled by an
external dictionary (indicated by tagged value asDictionary=true) whose location is given by
its vocabulary tagged value.

 Figure 1-7 — Codelists

Implementations (and specific encodings) are allowed to depart from encoding hints.
Different implementations may use different encoding schemes (and translation tables to
other encoding schemes). For example preparation of a feature catalogue for an ISO 8211
encoding may transform a dictionary into an XML fragment which is merged into (or
Xinclude‟d in) the XML feature catalogue (obviously an additional procedure is needed for
maintenance). This allows XML/GML encodings to use the dictionary while still allowing other
encodings to function within their limitations.
The tagged values for S100 CodeLists are described in the table below.

Table 1-5 — Tagged values for codelists

Model
Tag

asDictionary vocabulary extensible encodingHint
enumeration
with pattern

false (nil) true: additional
values permitted
(default)

false: additional
values not
permitted

enum: encode as ordinary
enumeration (must have
extensible=false)

open: encode as union of list
and pattern “other: \w{2,}"
(default)

+ others as defined in product
specifications

dictionary true (URI) true: additional
values permitted

false: additional
values not
permitted
(default)

enum: encode as ordinary
enumeration (must have
extensible=false)

resource: encode as URI
pointing to item in vocabulary
(default)

open: encode as URI
identifying an item in either the
specified vocabulary or
another vocabulary

+ others as defined in product
specification, or empty

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language 10

1-4.71-4.8 Enumerated types

An enumerated type declaration defines a list of valid identifiers of mnemonic words.
Attributes of an enumerated type can only take values from this list.

EXAMPLE

Figure 1-6 8 — Enumeration

Enumerations are modelled as classes that are stereotyped as <<enumeration>>. An
enumeration class can only contain simple attributes which represent the enumeration values.
Other information within an enumeration class is void. An enumeration is a user-definable
data type, whose instances form a list of named literal values. Usually, both the enumeration
name and its literal values are declared. The extension of an enumeration type will imply a
schema modification.

1-4.81-4.9 Relationships and associations

1-4.8.11-4.9.1 Relationships

Association

A semantic connection between two instances

Generalization

A relationship between an element
and the subelements that may be substituted for it

Dependency

The use of one element by another

Refinement

A shift in levels of abstraction

Aggregation

A part-of relationship

Composition

 Strong Aggregation, children are deleted if parent is
deleted

Figure 1-7 9 — Different kinds of relationships

A relationship in UML is a concrete semantic connection among model elements. Kinds of
relationships include association, generalization, aggregation/composition, meta relationship,
flow, and several kinds grouped under dependency. In ISO 19103 there is a clear distinction
between the general term “relationship,” and the more specific term “association”. Both are

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language 11

defined for class to class linkages, but association is reserved for those relationships that are
in reality instance to instance linkages. “Generalization,” “realization” and “dependency” are
class to class relationships. “Aggregation,” and other object to object relationships, are more
restrictively called “associations.” It is always appropriate to use the most restrictive term in
any case, so in speaking of instantiable relationships, use the term “association.”

In S-100, generalization, dependency and refinement are used according to the standard
UML notation and usage. In the following the usage of association, aggregation and
composition is described further.

1-4.8.21-4.9.2 Association, composition and aggregation

An association in UML is the semantic relationship between two or more classifiers (e.g.
class, interface, type, ...) that involves connections among their instances.

An association is used to describe a relationship between two or more classes. In addition to
an ordinary association, UML defines two special types of associations called aggregation
and composition. The three types have different semantics. An ordinary association shall be
used to represent a general relationship between two classes. The aggregation and
composition associations shall be used to create part-whole relationships between two
classes.

A binary association has a name and two association-ends. An association-end has a role
name, a multiplicity statement, and an optional aggregation symbol. An association-end shall
always be connected to a class.

Figure 1-8 10 — Association

Figure 1-108 shows an association named "A" with its two respective association-ends. The
role name is used to identify the end of an association, the role name r1 identifies the
association-end which is connected to the class named class2. The multiplicity of an
association-end can be one of exactly-one (1), zero-or-one (0..1), one-or-more (1..*), zero-or-
more (0..*) or an interval (n..m). Viewed from the class, the role name of the opposite
association-end identifies the role of the target class. We say that class2 has an association
to class1 that is identified by the role r2 and which as a multiplicity of exactly one. The other
way around, we can say that class1 has an association to class2 that is identified by the role
name r1 with multiplicity of zero-or-more. In the instance model we say that class1 objects
have a reference to zero-or-more class2 objects and that class2 objects have a reference to
exactly one class1 object.

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language 12

Figure 1-9 11 — Specification of multiplicity

The number of instances that can participate at one end in an association (or attribute) is
specified in Figure 1-119.

An aggregation association is a relationship between two classes, in which one of the classes
plays the role of container and the other plays the role of a containee. Figure 1-120 shows an
example of an aggregation. The diamond-shaped aggregation symbol at the association-end
close to class1 indicates that class1 is an aggregation consisting of class3. The meaning of
this is that class3 is a part of class1. In the instance model, class1 objects will contain one-or-
more class3 objects. The aggregation association shall be used when the containee objects
(that represent the parts of a container object) can exist without the container object.
Aggregation is a symbolic short-form for the part-of association but does not have explicit
semantics. It allows for sharing of the same objects in multiple aggregations. If a stronger
aggregation semantics is required, composition shall be used as described below. It is
possible also to define role name and multiplicity at the diamond shaped end as well.

Figure 1-10 12 — Aggregation

A composition association is a strong aggregation. In a composition association, if a
container object is deleted then all of its containee objects are deleted as well. The
composition association shall be used when the objects representing the parts of a container
object, cannot exist without the container object. Figure 1-130 shows a composition
association in which the diamond-shaped composition symbol has a solid fill. Here class1
objects consist of one-or-more class4 objects, and the class4 objects cannot exist unless the
class1 object also exists. The required (implied) multiplicity for the owner class is always one.
The containees, or parts, cannot be shared among multiple owners.

It is possible also to define role name at the diamond shaped end as well, but the multiplicity
will always be at most one. Composition shall be used to have the semantic effect of
containment. Composition should be used with care, in particular one should consider the
different requirements from various application perspectives before introducing this constraint.
The application of the composition construct should be considered within the context of a
model, (rather than the scope), where context means the application domain within which the
application must be consistent. This is in order to prevent problems where different
applications have different requirements for composition.

Figure 1-131 — Composition (strong aggregation)

All associations shall have cardinalities defined for both association ends. At least one role
name shall be defined. If only one role name is defined, the other will by default be
inv_rolename.

All association ends (roles) representing the direction of a relationship must be named or else
the association itself must be named. The name of an association end (the rolename) must
be unique within the context of a class and its supertypes. The direction of an association
must be specified. If the direction is not specified, it is assumed to be a two-way association.
If one-way associations are intended, the direction of the association can be marked by an
arrow at the end of the line. If only the association is named, the direction of the association
shall be specified.

Every UML association has navigability attributes that indicate which player in the association
has direct access to the association opposite role. The default logic for an unmarked
association is that it is two-way. Associations that do not indicate navigability are two-way in
that both participants have equal access to the opposite role. Two-way navigation is not

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language 13

common or necessary in many client-to-server operations. The counterexample to this may
be notification services, where the server often instigates communication on a prescribed
event. The use of two-way relations that introduce unreasonable package dependencies shall
be minimized. One-way relations shall be used when that is all that is needed.

If an association is navigable in a particular direction, the model shall supply a “role name”
that is appropriate for the role of the target object in relation to the source object. Thus in a 2-
way association, two role names will be supplied. The default role name is “the<target class
name>” in which the target class is referenced from the source class (this is the default name
in many UML tools). Association names are of secondary importance and actually are more
for documentation purposes. Sometimes they can, however, be used for generating
association-manager objects in environments that support associations as a first-class citizen
concept.

Multiplicity refers to the number of relationships of a particular kind that an object can be
involved in. If an association end were not navigable, putting a multiplicity constraint on it
would require an implementation to track the use of association by other objects (or to be able
to acquire the multiplicity through query). If this is important to the model, the association shall
be two-way navigable to make enforcement of the constraint more tenable. In other words, a
one-way relation implies a certain “don‟t care” attitude towards the non-navigable end.

N-ary relationships, for N > 2 shall be avoided whenever possible, in order to reduce
complexity. Multiplicity for associations are specified as UML multiplicity specifications. An
association with role names can be viewed as similar to defining attributes for the two classes
involved, with the additional constraint that updates and deletions are consistently handled for
both sides. For one-way associations, it thus becomes equivalent to an attribute definition.
The recommendation for S-100 is to use the association notation for all cases except for
those involving attributes of basic data types.

1-4.91-4.10 Stereotypes

1-4.9.11-4.10.1 Use of standard UML stereotypes for class/classifier

In S-100 the following stereotypes are used:

a) <<Interface>> a definition of a set of operations that is supported by objects having
this interface.

b) <<Type>> a stereotyped class used for specification of a domain of instances
(objects), together with the operations applicable to the objects. A type may have
attributes and associations.

c) <<Enumeration>> A data type whose instances form a list of named literal values.
Both the enumeration name and its literal values are declared. Enumeration means a
short list of well-understood potential values within a class. Classic examples are
Boolean that has only 2 (or 3) potential values TRUE, FALSE (and NULL). Most
enumerations will be encoded as a sequential set of Integers, unless specified
otherwise. The actual encoding is normally only of use to the programming language
compilers. In S-100 Codelists taken from the ISO 19100 standards are classified as
enumerations.

d) <<MetaClass>> A class whose instances are classes. Metaclasses are typically used
in the construction of metamodels. The meaning of metaclass is an object class
whose primary purpose is to hold metadata about another class. For example,
“FeatureType” and “AttributeType” are metaclasses for “Feature” and “Attribute”.'

e) <<DataType>> A descriptor of a set of values that lack identity (independent
existence and the possibility of side effects). Data types include primitive predefined
types and user-definable types. A DataType is thus a class with few or no operations
whose primary purpose is to hold the abstract state of another class for transmittal,
storage, encoding or persistent storage.

e)f) <<CodeList>> A data type whose instances form a list of named literals, some or all
of whose members may not be known. The CodeList name is declared in the
application schema. The list members may be described by either (i) a list of codes
and corresponding literals augmented with a pattern allowing additional values
conforming to a certain format, or (ii) a pointer to a resource consisting of a list of

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language 14

code/literal mappings. The resource is called a vocabulary or dictionary. Tagged
values attached to the CodeList declaration indicate which form is used and the
location of the resource (generally as a URI). CodeLists should be used only when
an enumeration is either unusable or inefficient (e.g., if the full list of values is not
known to the specification authors or the list of allowed values is long, volatile,
controlled by another authority, and/or shared by multiple domains

1-4.101-4.11 Optional, conditional and mandatory – attributes and
associations

In UML all attributes are per default mandatory. The possibility to show multiplicity for
attributes and association role names provide a way of describing optional and conditional
attributes.

The default is mandatory which thus do not need to be specified. Where a multiplicity of 0..1
or 0..* is specified it means that this attribute may be present or may be omitted. A
conditional attribute shall be shown as an optional attribute with a constraint statement in
OCL. The condition shall be expressed as an OCL constraint in connection with the class
declaration. This mean that a null value must be represented in the instance model, e.g.: a
place holder element or a null value. An optional or conditional attribute shall never have a
default value defined.

An attribute may be defined as conditional, meaning that it is optional depending on other
attributes. The dependencies may be by existence-dependence of other (optional) attributes
or by the values of other attributes. A conditional attribute is shown as optional with a
conditional expression attached. The condition shall be written in a note directly associated
with the attribute, or with the class and the name of the attribute on the first line. A conditional
attribute shall never have a default value defined.

If unspecified, the default multiplicity for associations is 0..*, and the default multiplicity for
attributes is 1.

1-4.111-4.12 Naming and name spaces

All classes shall have unique names. All classes shall be defined within a package. Class
names shall start with an upper case letter. A class shall not have a name that is based on its
external usage, since this may limit reuse. A class name shall not contain spaces. Separate
words in a class name shall be concatenated. Each subword in a name shall begin with a
capital letter, such as “XnnnYmmm”.

To ensure global uniqueness of class names, all class names shall be defined with bi-alpha
prefixes. Bialpha prefixes allows for the use of _ after, such as in GM_Object. The geometry
model uses bialpha prefixes (GM and TP). Other prefixes should be defined for other areas.

The name of an association must be unique within the context of a class and its supertypes or
else it must be derived.

Attribute names shall start with a lower-case letter.

Example: firstName, lastName.

Precise technical names should be used for attributes and operations to avoid confusion.

Example: alphaCodeIdentifier, dateOfLastChange

Documentation fields should be used extensively to describe element.

Don't reiterate class names inside the attribute names. Keep names short if possible.

Example: class S-100_WorkingGroup, attribute workingGroupName.

Naming conventions are used for a variety of reasons, mainly readability, consistency and as
a protection against case-sensitive binding.

The names of UML elements should:

1) Use precise and understandable technical names for classes, attributes.

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language 15

Example: index not i

2) For attributes and association roles capitalize only the first letter of each word after
the first word that is combined in a name. Capitalize the first letter of the first word for
each name of a class, package, type-specification and association names.

Example: computePartialDerivatives (not computepartialderivatives or

COMPUTEPARTIALDERIVATIVES)

Example: CoordinateTransformation (not coordinateTransformation)

3) Keep names as short as practical. Use standard abbreviations if understandable, skip
prepositions, and drop verbs when they do not significantly add to meaning of the
name.

 numSegment instead of numberOfSegments

 Equals instead of IsEqual

 value() instead of getValue()

 initObject instead of initializeObject

 length() instead of computeLength()

The UML naming scope with package::package::className allows for the same className
to be defined in different packages. However, many UML tools do not currently allow for this.
Therefore, a more restrictive naming convention is adopted:

1) Although the model is case sensitive, all class name should be unique in a case

insensitive manner.

2) Class name should be unique across the entire model (so as not to create a problem

with many UML tools).

3) Package names should be unique across the entire model. (for the same reason).

4) Every effort should be applied to eliminate multiple classes instantiating the same

concept.

1-4.121-4.13 Notes

Note boxes are used to comment on the model in general or on a specific item (i.e. class or
association) of the model.

Figure 1-142 — Example note

1-4.131-4.14 Packages

A UML package is a container that is used to group declarations of subpackages, classes and
their associations. The package structure in UML enables a hierarchical structure of
subpackages, class declarations, and associations. A package shall be used to represent a
schema.

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language 16

Figure 1-153 — Example package structure

The packages, classes and attributes in the schema model can be identified by a qualified
name. The form of the qualified names is name1 : :name2 : :name3, where name1 is the
name of the outermost package, name2 is a name which appears within the namespace of
name1, and name3 is a name that appears within the namespace of name2. The standard
UML “: :” symbol shall be used as a name separator. There is no limit of the depth of this
namespace hierarchy.

EXAMPLE In the Spatial schema there is a subpackage named Geometry which defines a class
named GM_Object. This class has an association with role name SRS (Spatial Reference System). The
fully qualified name for this association is: Spatial.Geometry : :GM_Object.SRS.

1-4.141-4.15 Documentation of models in S-100

In addition to the diagrams, it is necessary to document the semantics of the model. The
meaning of attributes, associations, operations and constraints needs to be explained. This is
done by means of context tables. A context table is defined for each class; it has the following
columns:

 Role Name

 Name

 Description

 Multiplicity

 Data Type

 Remarks

The Role Name column specifies what property of the class is described in this row. Possible
values are:

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language 17

 Class – The class itself

 Attribute – An attribute of that class

 Association – An association to another class

 Enumeration – An enumerated data type

 Literal – A value of an enumerated data type

The Name column contains the name of the property. For association this is the role name
used for the given class. In the Description column the semantics of the property are given.
The Multiplicity column contains the number of occurrences of the property in the class. This
also describes which properties are mandatory and which are optional. The Data Type
column contains the name of the data type of the property. In the Remarks column additional
information about the property can be expressed. This includes constraints or conditions. For
the documentation of enumerated types the Multiplicity and Data Type column are not used.

The following Example illustrates the use of context Tables:

Figure 1-164

Role Name Name Description Multiplicity Data Type Remarks

Class WorkingGroup
A group of experts doing
some useful work

- -

Attribute name
The name of the working
group

1 CharacterString

Attribute organization
The organization
responsible for the
working group

1 CI_ResponsibleParty

Attribute scope
The reason why so many
people travel around the
world

1 CharacterString

Association member
A person that is
designated to contribute to
the group

1..* Person

S-100 version 1.0.0 January 2010

Part 1 - Conceptual Schema Language 18

Role Name Name Description Multiplicity Data Type Remarks

Class Person A human being - -

Attribute name The name of the person 1 CharacterString

Attribute givenName
The first name of the
person

1 CharacterString

Attribute middleInitial
The middle initial of the
person

0..1 Character

Attribute dateOfBirth
The date when the person
was born

1 Date

Association workingGroup
A working group the
person contributes to

0..* WorkingGroup

Role Name Name Description Multiplicity Data Type Remarks

Class Membership
A class describing the
membership of a person
in a working group

- -

Attribute role
The role that the person
has in the working group

0..1 WG_Role
Ordinary
member have
no role

Attribute representing

The organization which is
represented by the
person in the working
group

1 CI_ResponsibleParty

Role Name Name Description Remarks

Enumeration WG_Role
The roles people can have in a
working group

Literal chairman The gov‟nor

Literal deputy His best friend

Literal secretary
Poor man (or woman) has to have his
(or her) fingers always on the
keyboard

